

Probabilistic degradation processes in Marine environnement:

- Mark Stewart: actual works and future trends

- Mestapha Oumouni (projet SI3M): modeling time and spatial dependence of degradation processes through gamma processes

- Franck Schoefs (projet SI3M et ANR Evadeos): assessing spatial variability from on site measurements

- Lara Hawchard (thèse ministère): new methods for time-variant reliability assessment of degradating structures

- Binh Tran (ANR Climbois): bayesian network for degradation identification from accelerated test / dynamic bayesian networks for reliability assessment of degradating structures

Why assessing spatial variability of infrastructures?

 That is an existing phenomena: spatial variability of concrete during building
 + spatial variability of degradation processes acting on steel and concrete (environment on large structures)

Why assessing spatial variability of infrastructures?

- That is an existing phenomena: spatial variability of concrete during building
 + spatial variability of degradation processes acting on steel and concrete (environment on large structures)
- That affects the structural reliability assessment (less conservative) [Der Kiureghian 1996, Stewart 2004,]

How to assess spatial variability?

- Have a ot of money or **have a pre-defined model** (a prioiri epistemic uncertainty)
- > Stationarity
- Ergodicity
- Define a procedure for NDT, SDT or SHM [Breysse et al. 2015, Schoefs et al. 2016]
- Get data (few projects)

How to assess spatial variability?

- Have a ot of money or **have a pre-defined model** (a prioiri epistemic uncertainty)
- > Stationarity
- Ergodicity piece wise ergodicity [Scoefs et al., 2004]

And an inference model through a mathematical expression [Karhunen Loeve, Shinozuka, ...]

- Define a procedure for NDT, SDT or SHM [Breysse et al. 2015, Schoefs et al. 2016]
- Get data (few projects)

(O'Connor, Kenshel, , 2013)

S

Spatial variability of what?

- Degradation indicator?
- Physical property?
- Model parameter?

Duprat et al. 2016 (under review)

CETE de l'Ouest

Département Laboratoire de Saint-Brieuc

Presentation of the project

plus en amont de l'ouvrage.

Présentation de la structure

• Poutre J fissurée

=> Essai d'une nouvelle méthode de réparation

CETE de l'Ouest

CETE de l'Ouest

IXEAD 🖌

Objectif: suivi dans le temps et <u>analyse statistique pour comprendre la variabilité</u> et A terme: optimisation du dimensionnement de la procatho en zone de marnage

Mesures amont:

Mesures

Mesures: Résistivité

Les photos ci-dessous illustrent parfaitement ces variations d'humidité sur la poutre entre les deux extrémités.

de Saint-Brieuc

Nantes Saint-Nazaire

PARE

Mesures: Potentiel

Les photos ci-dessous illustrent parfaitement ces variations d'humidité sur la poutre entre les deux extrémités.

10 : potentiel de corrosion de la poutre

Fi

CETE de l'Ouest

Mesures: Fissure

Analyse stat/ Modélisation Stochastique

Figure 12 : potentiel de corrosion du lit intérieur d'armatures longitudinales inférieures

Analyse stat/Ecart et erreur de mesure >> labo?

Analyse stat

Figure 12 : potentiel de corrosion du lit intérieur d'armatures longitudinales inférieures

Applications actuelles:

- Fissuration / Offshore
- Corrosion / CND US
 - Chlorures / CSD
- Détection vides / CND IE
- Divers / Analyse d'images

ES 5 5 5 5 SS 1 2 3 4 5 40

Which post-treatment of the chloride profile / Fick model ?

Which post-treatment of the chloride profile / Fick model ?

Data in 2015 (every 60 cm): promizing

CETE de l'Ouest

IXEAE

Modeling and first analysis

Le champ s'écrit sous la forme :

$$\mathbf{F}(\mathbf{x}, \boldsymbol{\theta}) = \boldsymbol{\mu}_{\mathbf{z}}(\mathbf{x}) + \boldsymbol{\sigma}_{\mathbf{z}}(\mathbf{x}) \sum_{j=1}^{N} \sqrt{\lambda_{j}} \boldsymbol{\xi}_{j}(\boldsymbol{\theta}) \boldsymbol{f}_{j}(\mathbf{x})$$

- μ_z et σ_z sont la moyenne et l'écart-type du champ aléatoire
- λ_j et f_j sont les valeurs et les fonctions propres
- ξ_j sont des variables aléatoires non corrélées
 - En surface : Porosité du surface + Diffusion des ions chlorures
 - Dans l'enrobage : Dégradation du béton + Transfert des ions chlorures
 - En profondeur : Béton sain

Next step

Detailed analysis
Effect of environment / material

Nouvelle étape (2010): cas de champs aléatoires (stochastiques)

Mesurer aux bons endroits avec le bon outil (au bon moment – saison - programmation)

Initiation du travail: thèse ECND-PdL

▶ PÔLE DE COMPÉTENCE ECND-PdL

(ecndpdl.fr)

GeM / Ifsttar / IRCCyN

Idée: un champ de dégradation dans un matériau n'est pas du bruit

Structuré au niveau probabiliste:
Stationnaire (variance constante + corrélation spatiale)
Stationnaire par Morceaux

-> Connaissance a priori + Modèle

Jaksa MB, Kaggwa WS, Brooker PI. Experimental evaluation of the scale of fluctuation of a stiff clay, in: Appl. Stochastics Probab., Melcher an, Sydney Balkema, Rotterdam: 2000: pp. 415–422.

Figure 2. Spatial correlation of cone tip resistance in a clay (adapted from [29]).

Stochastic Characterization of Random Fields From ND Measurements: a Two Stages Procedure

F. Schoefs¹, T.V. Tran¹, E. Bastidas-Arteaga¹, G. Villain G.², X. Derober

Elément clé: à partir de quel moment autocorrélation faible? >> mesures indépendantes > localisation de zones faibles / fortes

Modélisation possible de trajectoires

Objectif final: optimiser (minimum pour objectif de diagnostic Précision / Confiance)

Application

Figure 10. Devices used for obtaining the NDT data.

Figure 15. Comparison between modeling and real results in the case of $\varepsilon_{\mu} = 10\%$ and $P_{ti,\mu} = 95\%$.

Next work

Diagnosis and data analysis for the survey of a new cathodic protection placed in the Coal terminal of Montoir de Bretagne

Applications possibles

Vous accompagner dans vos projets de réingénierie.

Cellule de compétences rattachée au GEM et **spécialisée dans le suivi et la maintenance des ouvrages du génie civil et industriel.**

Une expertise basée sur trois logiciels issus de la Recherche

VisioDefect®

 Mesurer précisément le diamètre des armatures corrodés afin de prendre des décisions de réparations et de maintenance adaptées.

VisioControl®

 Mesurer avec précision l'épaisseur d'enrobage de béton mise en œuvre lors de travaux de réparation, notamment par projection.

ChlorePredict®

 Prédire la date d'initiation de la corrosion par les ions chlorures dans les structures en béton armé

« La Recherche pour innover et vous différencier »

UNIVERSITÉ DE NANTES FACULTÉ DES SCIENCES ET TECHNIQUES

Grandeurs recherchées par analyse d'images pour la réingénierie

d= épaisseur d'enrobage initiale et /ou après réparations

ds = écart entre les armatures longitudinales

t = épaisseur des armatures (niveau de corrosion)

VisioDefect®

Génération des résultats poutres par poutres permettant d'appuyer un diagnostic et d'aider à la prise de décision.

Epaisseur (mm)

30

35

25

Min	26	20,5
Max	32,2	34,7
Моу	29	26
Quant 10%	27	21,5

Fréquence

0 L

ChlorePredict®

Objectif : apporter un outil de contrôle non destructif pour la prévision d'introduction des ions chlorures dans les structures en béton armé.

Le logiciel intègre tous les paramètres (et leurs incertitudes) entrant en compte dans la diffusion des ions chlorures, notamment en

zone de marnage :

- La quantité de chlorures;
- La qualité du béton;
- La température;
- L'exposition;
- L'humidité.

Un constat :

enrobage

 Pas de possibilités de connaitre la propagation d'ions chlorures dans une structures sans avoir recours à des méthodes destructives

Une réponse:

 Modéliser la propagation d'ions chlorures en intégrant toutes les incertitudes sur les paramètres

- Ces logiciels, reposant sur des données statistiques globales, apportent aux décideurs des données essentielles à des prises de décision contrôlées

Using real data in BN:

Cuve de marnage à l'eau de mer avec

Natural test	T1	Т2	Т3
Exposure time (days)	65	207	320
Number of profiles	3	3	3
Accelerated test	T1	Т2	Т3
Exposure time in lab (days)	65	212	436
Number of profiles	6	6	6

- Essais vieillissement accéléré
- Permet de reproduire un vieillissement de structure en béton de manière accélérée.
- Détection de la teneur en chlorure dans les dalles par barrettes d'instrumentation ou par carottages.
- Mesure en continu de la salinité, de la température, de l'humidité et de l'air pour reproduire les phases de séchage/ mouillage des conditions de vie réelles des ouvrages.
- Réalisation de profils de chlorures
- Traitement statistique de données
- Détermination du facteur d'échelle en temps

