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Time-Variant Reliability Analysis 
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Time-Variant Reliability Analysis 

Pf,c(ti,tf) = Prob (∃ τ ∈ [ti,tf] : G(ω ,τ) < 0) 

Time-variant reliability problem 

t 

G(ω,t) 

NMCS 

Monte-Carlo Simulation (MCS) method 

ti tf 



Time-Variant Reliability Analysis 

Gmin 

Pf,c(ti,tf) ≈ Prob ( min {G(τ)} < 0) 

ti ≤ τ ≤ tf  
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Extreme performance approach 
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υ+(t) = lim ____________________________ Prob({G(t) > 0} ∩ {G(t+∆t) < 0}) 

∆t ∆t→0+ 

“PHI2 method” 

Pf,c(ti,tf) ≤ Pf,i(t0) + E[N+(ti,tf)]
 

Andrieu-Renaud C., Sudret, B. and Lemaire, L. 

(2004). “The PHI2 method: a way to compute 

time-variant reliability.” Reliability Engineering 

and system Safety. 84: 75-86. 

Extreme performance approach Outcrossing approach 
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Metamodeling techniques 
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Metamodeling techniques 

                                             

 

Xj 
Xi Xk 

Metamodel 

Ĝ(t*) 

Number of evaluations of G(t)=  Ns x Nt    

Ns << NMCS 

t0 t1 t2 ti ti+1 tNt 

t 

G(ω,t) 

NMCS 

^ 
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Polynomial Chaos Expansions 
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Hyperbolic truncation 
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Adaptive regression-based algorithm 

R2:  Local error 

Q2: Global error 



Polynomial Chaos Expansions for Time-Variant Reliability Analysis 
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Time-variant limit state function 

Nλ  non physical 
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Principal  Component  Analysis 
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Global metamodel 
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Inputs Outputs 

Standard Gaussian random 

variables ξ1, ξ2, … 
G(t0), G(t1), …, G(tf)  

Pf,c(ti,tf) ≈ _________________________________________ Number of failing trajectories 

Total number of trajectories 

Polynomial Chaos Expansions for Time-Variant Reliability Analysis 
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Illustrative Examples 

Case study 1 

G(t) = R(t) – σmax (t) 

R(t) = R0(1-1.01t) 
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Illustrative Examples 

Case study 1 

Δt = 6 weeks 

PCA 

G(t) = R(t) – σmax (t) 

Nλ = 12 

R(t) = R0(1-0.01t) 

Discretization of the 

stochastic processes 
28 input random 

variables in total 
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Illustrative Examples 

Case study 1 

- Evolution in time of the cumulative probability of failure - 

The proposed method is efficient for problems 

with Non-Gaussian Non-Stationary stochastic 

processes. 
t-PCE 
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Case study 2 
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Case study 2 

G(t) = 3 + Y(t) -      ∑ Xi
2  1  

 6   i = 2  

10 

Highly non linear limit state function 

Gaussian 
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Random variables 

 - Evolution in time of the cumulative probability of failure - 

Illustrative Examples 

- Shape of the limit state function at the initial time -   

  t-PCE 
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Case study 3 

Illustrative Examples 

6 Gaussian processes 

2 Lognormal variables 

2 Lognormal variables 

“Finite Element Model ” G(t) = δmax  - δ(t) 

Discretization of the 

stochastic processes 
76 input random 

variables in total 

High 

dimensional 

problem 

 (t) 
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Case study 3 

Illustrative Examples 

6 Gaussian processes 

2 Lognormal variables 

2 Lognormal variables 

- Evolution in time of the cumulative probability of failure - 

The proposed method is efficient for 

high dimensional problems. 

t-PCE 

 (t) 
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PCE combined with PCA is: 
 

 efficient for time-variant reliability problems involving Non-Gaussian 

Non-Stationary stochastic processes. 

better  and more general than some recent methods (PHI2) 

affordable for high dimensional problems 

 suitable for highly nonlinear limit state functions 
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Time-Variant Reliability-Based Design Optimization 

( t-RBDO ) 

Time-variant  

reliability analysis 

Time-variant  

reliability -based 

design optimization 

aims to calculate the cumulative probability of failure of a given 

structure over its intended lifetime. 

aims to find the optimal design (cost) of a structure while procuring a 

certain reliability level over the structure lifetime. 

d* du dl 



Time-Variant Reliability-Based Design Optimization 

( t-RBDO ) 

Conclusion and Work in Progress 

Augmented reliability space 

22/22 



New methods for time-variant reliability 
assessment of degrading structures  

                            Lara HAWCHAR    

Franck SCHOEFS                              Charbel-Pierre EL SOUEIDY 

Thanks For Your Attention 





Conclusion and Work in Progress 

 Variance  Standard Gaussian 

random process Vector of unknown 

coefficients 

 Set of regression 

functions 

Regression model Gaussian random process 
^ 

Bi (X)  ≈ Bi 
(K) (X) =   f (X)T β    +    σ2 Z(X)  

KRIGING  

(Gaussian Process Modeling) 



3/12 

Time-Variant Reliability Analysis 

Stochastic process Y(t) 

At two instants t1 and t2, the corresponding random variables Y(t1) and Y(t2) are correlated. The 

exponential square autocorrelation function is commonly used: 

= autocorrelation length 
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Time-Variant Reliability Analysis 

Stochastic process Y(t) 

Stationary       

or                  

Non-Stationary 

Gaussian           

or                  

Non-Gaussian 
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Time-Variant Reliability Analysis 

Extreme performance approach 
 

 

Outcrossing approach 

Gmin 

Sample  Time  Gmin 

 

    X1  t1*  G(t1*) 

    X2   t2*  G(t2*) 

    .   .    . 

    .   .    . 

   XN   tN*  G(tN*) 

t 

G(θ,t)  

Out-crossing 

υ+(t) = lim ____________________________ Prob({G(t) > 0} ∩ {G(t+∆t) < 0}) 

∆t ∆t→0+ 

“PHI2 method” 

Pf,c(ti,tf) ≤ Pf,i(t0) + E[N+(ti,tf)]
 

Pf,c(ti,tf) ≈ Prob ( min {G(τ)} < 0) 
Andrieu-Renaud C., Sudret, B. and Lemaire, L. 

(2004). “The PHI2 method: a way to compute 

time-variant reliability.” Reliability Engineering 

and system Safety. 84: 75-86. 
ti ≤ τ ≤ tf  
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Time-Variant Reliability Analysis 

Main challenges 

 

 

 requires a very high number of evaluations of the deterministic mechanical model 

 

 existent time-variant reliability methods have some limitations (nonlinear limit state 

functions, computationally demanding global optimization) 

 

 high dimensionality of time-dependent problems (discretization of stochastic 

processes) 
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Illustrative Examples 
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Illustrative Examples 

The proposed method (TV-PCA-SPCE): 
 

  is very accurate, 

  is more efficient than PHI2 (better accuracy with comparable computational costs. 

Number of function 

evaluations 

MCS 1,000,000 x 100 

PHI2 18,720 

TV-PCA-SPCE 200 x 100 

Stochastic 

process 

Lognormal 

variables 

Case study 1 

- Evolution in time of the cumulative probability of failure - 


