

New methods for time-variant reliability assessment of degrading structures

Lara HAWCHAR

Franck SCHOEFS

Charbel-Pierre EL SOUEIDY

Outline

- ✓ Problem context
- ✓ Time-variant reliability analysis
- ✓ Polynomial chaos expansion
- ✓ Application examples
- ✓ Conclusion and work in progress

Problem context

Design \longrightarrow **Monitoring** \longrightarrow **Maintenance**

Uncertainty

Material properties

Geometry parameters

Loadings

Time dependency

Degradation phenomena (e.g. corrosion, fatigue, cracking, ...)

Time-variant loadings (e.g. wind, swell, traffic, ...)

Problem context

Design \longrightarrow **Monitoring** \longrightarrow **Maintenance**

Uncertainty

Material properties

Geometry parameters

Loadings

Time dependency

Time-variant reliability Degradation phenomena (e.g. analysis

Time-variant loadings (e.g. wind, swell, traffic,...)

Time-dependent Limit State Function

Time dependency Actual solicitation
$$G(\omega,t) = R(\omega,t) - S(\omega,t)$$
Uncertainty Threshold resistance

Time-variant reliability problem

$$P_{f,c}(t_i,t_f) = \text{Prob} \ (\exists \ \tau \in [t_i,t_f] : \mathbf{G}(\omega,\tau) < 0)$$

Monte-Carlo Simulation (MCS) method

Prohibitive!
$$P_{f,c}(t_i, t_f) \approx \frac{\text{Number of failing trajectories}}{\text{Total number of trajectories}}$$

Extreme performance approach

$$P_{f,c}(t_i,t_f) \approx \operatorname{Prob}\left(\min_{t_i \leq \tau \leq t_f} \{G(\tau)\} < 0\right)$$

Extreme performance approach

$$P_{f,c}(t_i,t_f) \approx \operatorname{Prob}\left(\min_{t_i \leq \tau \leq t_f} \{G(\tau)\} < 0\right)$$

Outcrossing approach

$$v^{+}(t) = \lim_{\Delta t \to 0^{+}} \frac{\text{Prob}(\{G(t) > 0\} \cap \{G(t + \Delta t) < 0\})}{\Delta t}$$

$$P_{f,c}(t_i,t_f) \le P_{f,i}(t_0) + \mathbb{E}[N^+(t_i,t_f)]$$

"PHI2 method" Andrieu-Renaud C., Sudret, B. and Lemaire, L. (2004). "The PHI2 method: a way to compute time-variant reliability." Reliability Engineering and system Safety. 84: 75-86.

Metamodeling techniques

Metamodeling techniques

Polynomial Chaos Expansions

unknown coefficients polynomial chaos basis
$$G(\mathbf{X}) \approx G^{(CP)}(\xi) = a_0 \psi_0(\xi) + a_1 \psi_1(\xi) + a_2 \psi_2(\xi) + a_3 \psi_3(\xi) + ... + a_{(P-1)} \psi_{(P-1)}(\xi)$$

$$\begin{pmatrix} X_1^{(1)} & X_2^{(1)} & \cdots & X_m^{(1)} \\ \vdots & \ddots & \vdots \\ X_1^{(N_S)} & X_2^{(N_S)} & \cdots & X_m^{(N_S)} \end{pmatrix} \xrightarrow{Original \, model} \begin{pmatrix} Y^{(1)} \\ \vdots \\ Y^{(N_S)} \end{pmatrix}$$

$$\begin{bmatrix} Isoprobabilistic \\ transformation \\ \vdots & \ddots & \vdots \\ \xi_1^{(N_S)} & \xi_2^{(1)} & \cdots & \xi_m^{(1)} \\ \vdots & \ddots & \vdots \\ \xi_1^{(N_S)} & \xi_2^{(N_S)} & \cdots & \xi_m^{(N_S)} \end{pmatrix} \xrightarrow{Surrogate \, model} \begin{pmatrix} \sum_{a \in A} c_a \psi_a \left(\xi_1^{(1)}, \xi_2^{(1)}, \dots, \xi_m^{(1)} \right) \\ \vdots \\ \sum_{a \in A} c_a \psi_a \left(\xi_1^{(N_S)}, \xi_2^{(N_S)}, \dots, \xi_m^{(N_S)} \right) \end{pmatrix}$$

Polynomial Chaos Expansions

unknown coefficients polynomial chaos basis
$$G(\mathbf{X}) \approx G^{(CP)}(\xi) = a_0 \psi_0(\xi) + a_1 \psi_1(\xi) + a_2 \psi_2(\xi) + a_3 \psi_3(\xi) + \dots + a_{(P-I)} \psi_{(P-I)}(\xi)$$

Hyperbolic truncation

Adaptive regression-based algorithm

$$A_{\beta} = \left\{ \boldsymbol{\alpha} \in \mathbf{N}^{m:} : \left\| \boldsymbol{\alpha} \right\|_{\beta} = \left(\sum_{i=1}^{m} \alpha_{i}^{\beta} \right)^{1/\beta} \leq p \right\}$$

 R^2 : Local error Q²: Global error

Time-variant limit state function

Inputs

Outputs

Standard Gaussian random variables
$$\xi_1, \, \xi_2, \, \dots$$

$$\hat{\mathbf{G}} = \overline{\mathbf{G}} + \sum_{i=1}^{N_{\lambda}} \hat{\mathbf{B}}_i \, w_i^t \longrightarrow \mathbf{G}(t_0), \, \mathbf{G}(t_1), \, \dots, \, \mathbf{G}(t_f)$$

$$P_{f,c}(t_i,t_f) \approx \frac{\text{Number of failing trajectories}}{\text{Total number of trajectories}}$$

Case study 1

Parameter	Distribution	Mean	Coefficient of variation	Autocorrelation function
L ₁	Deterministic	60 mm	0 %	NA
L_2	Deterministic	120 mm	0 %	NA
θ_1	Deterministic	10 deg	0 %	NA
θ_2	Deterministic	5 deg	0 %	NA
đ	Normal	42 mm	1.19 %	NA
h	Normal	5 mm	2 %	NA
R_0	Normal	560 MPa	10 %	NA
$\mathbf{F}_{1}(t)$	Gumbel Process	1800 exp(0.3t) N	10 %	$\exp[- \Delta t /4]$
\mathbf{F}_2	Normal	1800 N	10 %	NA
\mathbf{F}_3	Gumbel	1000 N	10 %	NA
T (t)	Gaussian Process	1900 N.m	10 %	$\exp\left[-(\Delta t/0.5)^2\right]$

$$G(t) = R(t) - \sigma_{\text{max}}(t)$$

$$R(t) = R_0(1-1.01t)$$

Case study 1

Parameter	Distribution	Mean	Coefficient of variation	Autocorrelation function
L_1	Deterministic	60 mm	0 %	NA
L_2	Deterministic	120 mm	0 %	NA
Θ_1	Deterministic	10 deg	0 %	NA
θ_2	Deterministic	5 deg	0 %	NA
đ	Normal	42 mm	1.19 %	NA
h	Normal	5 mm	2 %	NA
R_0	Normal	560 MPa	10 %	NA
$\mathbf{F}_{1}(t)$	Gumbel Process	1800 exp(0.3t) N	10 %	$exp[- \Delta t /4]$
\mathbf{F}_2	Normal	1800 N	10 %	NA
\mathbf{F}_3	Gumbel	1000 N	10 %	NA
T (<i>t</i>)	Gaussian Process	1900 N.m	10 %	$\exp\left[-(\Delta t/0.5)^2\right]$

Discretization of the stochastic processes

28 input random variables in total

Case study 1

The proposed method is efficient for problems with Non-Gaussian Non-Stationary stochastic processes.

- Evolution in time of the cumulative probability of failure - $\!\!\!$

	MCS	t-PCE	PHI2
$P_{f,c}(0,5)$	[1.50 x 10 ⁻² ; 1.55 x 10 ⁻²]	1.50 x 10 ⁻²	2.23 x 10 ⁻²
٤%		1.71 %	46.22 %
number of function evaluations	41,000,000	14,760	22,468

Case study 2

Highly non linear limit state function

$$G(t) = 3 + Y(t) - \frac{1}{6} \sum_{i=2}^{10} X_i^2$$
Gaussian Random process Standard Gaussian Random variables

- Shape of the limit state function at the initial time -

Case study 2

Highly non linear limit state function

$$G(t) = 3 + Y(t) - \frac{1}{6} \sum_{i=2}^{10} X_i^2$$
Gaussian Random process

Random variables

Case study 2

Highly non linear limit state function

$$G(t) = 3 + Y(t) - \frac{1}{6} \sum_{i=2}^{10} X_i^2$$
Gaussian Andom process

Random variables

- Shape of the limit state function at the initial time -

- Evolution in time of the cumulative probability of failure -

Case study 3

$$G(t) = \delta_{max} - \delta(t)$$

"Finite Element Model"

Discretization of the stochastic processes

76 input random variables in total

High dimensional problem

Case study 3

	MCS	t-PCE
$P_{f,c}(0,5)$	[3.48 x 10 ⁻² ; 3.55 x 10 ⁻²]	3.40 x 10 ⁻²
٤%		3.13 %
number of function evaluations	41,000,000	32,800

The proposed method is efficient for high dimensional problems.

⁻ Evolution in time of the cumulative probability of failure -

PCE combined with PCA is:

✓ efficient for time-variant reliability problems involving Non-Gaussian

Non-Stationary stochastic processes.

- ✓ better and more general than some recent methods (PHI2)
- ✓ affordable for high dimensional problems
- ✓ suitable for highly nonlinear limit state functions

Time-Variant Reliability-Based Design Optimization (t-RBDO)

Time-variant reliability analysis

aims to calculate the cumulative probability of failure of a given structure over its intended lifetime.

Time-variant reliability -based design optimization

aims to find the optimal design (cost) of a structure while procuring a certain reliability level over the structure lifetime.

Time-Variant Reliability-Based Design Optimization (*t*-RBDO)

Minimize: $C(\mathbf{d})$

$$C(\mathbf{d})$$

ubject to:
$$P_f(0, t_i) \le p_f(t_i)$$

 $d_1 \leq d \leq d_n$

Subject to:
$$P_f(0, t_i) \le p_f(t_i)$$
 $0 \le t_i \le T$ with $i = 1, ..., N_t \rightarrow N_t$ probabilistic constraints $p_f(t_i)$ is the threshold for P_f at t_i

Augmented reliability space

$$h(\mathbf{x}) = \int_{\mathbf{m}} f_{\mathbf{X}}(\mathbf{x} \mid \mathbf{d}) \, \pi(\mathbf{d}) \, \mathrm{d}\mathbf{d}$$

New methods for time-variant reliability assessment of degrading structures

Thanks For Your Attention

Lara HAWCHAR

Franck SCHOEFS

Charbel-Pierre EL SOUEIDY

KRIGING (Gaussian Process Modeling)

Stochastic process Y(t)

At two instants t_1 and t_2 , the corresponding random variables $Y(t_1)$ and $Y(t_2)$ are correlated. The exponential square autocorrelation function is commonly used:

$$ho_Y(t_1,t_2)=e^{-\left(rac{t_2-t_1}{\ell}
ight)^2}$$
 , ℓ = autocorrelation length

Stochastic process Y(t)

Extreme performance approach

$$P_{f,c}(t_i,t_f) \approx \text{Prob}\left(\min_{t_i \leq \tau \leq t_f} \{G(\tau)\} \leq 0\right)$$

Outcrossing approach

$$v^{+}(t) = \lim_{\Delta t \to 0^{+}} \frac{\text{Prob}(\{G(t) > 0\} \cap \{G(t + \Delta t) < 0\})}{\Delta t}$$

$$P_{f,c}(t_i,t_f) \le P_{f,i}(t_0) + \mathbb{E}[\mathbf{N}^+(t_i,t_f)]$$

"PHI2 method"

Andrieu-Renaud C., Sudret, B. and Lemaire, L. (2004). "The PHI2 method: a way to compute time-variant reliability." Reliability Engineering and system Safety. 84: 75-86.

Main challenges

- requires a very high number of evaluations of the deterministic mechanical model
- reliability methods have some limitations (nonlinear limit state functions, computationally demanding global optimization)
- high dimensionality of time-dependent problems (discretization of stochastic processes)

Case study 1

$$G(t) = \mathcal{M}_{u}(t) - \mathcal{M}_{max}(t) = \frac{(b_0 - 2ct) (h_0 - 2ct)^2}{4} f_y - \left[\frac{F(t)L}{4} + \rho_{st} \frac{b_0 h_0 L^2}{8} \right]$$

$$\rho_{\mathsf{F}}(t_1,t_2) = \exp\left(-\left(\frac{t_2 - t_1}{1\,\mathsf{an}}\right)^2\right)$$

Case study 1

	Number of function evaluations
MCS	1,000,000 x 100
PHI2	18,720
TV-PCA-SPCE	200 x 100

- Evolution in time of the cumulative probability of failure -

The proposed method (TV-PCA-SPCE):

- ✓ is very accurate,
- ✓ is more efficient than PHI2 (better accuracy with comparable computational costs.