

Etude fiabiliste d'une dent déflectrice en béton armé sollicitée par une avalanche de neige dense I. Ousset¹, D. Bertrand², M. Brun²,

A. Limam², M. Naaïm¹

(Irstea Grenoble¹ - INSA Lyon²)

Introduction O	Modèles 00 000	Résultats 0 00	Conclusion

1 Introduction

2 Modèles

Modèle mécaniqueModèle probabiliste

3 Résultats

- Principes
- Résultats

Conclusion

Introduction O	Modèles 00 000	Résultats 0 00	Conclusion

- Modèle mécanique
- Modèle probabiliste

3 Résultats

- Principes
- Résultats

Conclusion

Introduction O	Modèles 00 000	Résultats 0 00	Conclusion

- Modèle mécanique
- Modèle probabiliste

3 Résultats

- Principes
- Résultats

Introduction O	Modèles oo ooo	Résultats 0 00	Conclusion

- Modèle mécanique
- Modèle probabiliste

3 Résultats

- Principes
- Résultats

Introduction

Modèles

Résultats 0 00 Conclusion

Problématique

- Evènement de 1999 dans le couloir de Taconnaz (vallée de Chamonix)
 - Nécessité de progresser dans la connaissance des interactions entre avalanches et structures
- Objectif : Etude de la vulnérabilité des structures en BA à travers un exemple

Résultats 0 00 Conclusion

Problématique

- Evènement de 1999 dans le couloir de Taconnaz (vallée de Chamonix)
 - Nécessité de progresser dans la connaissance des interactions entre avalanches et structures
- Objectif : Etude de la vulnérabilité des structures en BA à travers un exemple

Introduction	Modèles
•	

Résultats 0 00

Problématique

- Evènement de 1999 dans le couloir de Taconnaz (vallée de Chamonix)
 - Nécessité de progresser dans la connaissance des interactions entre avalanches et structures
- Objectif : Etude de la vulnérabilité des structures en BA à travers un exemple

Introduction	Modèles	Résultats	Conclusion
	•0		
Modèle mécanique			

Modèle mécanique : caractéristiques

• Méthode éléments finis (Cast3M)

• Modèle 2D (éléments QUA4 et SEG2)

• Loi élasto-plastique à 2 critères de plasticité pour le béton et loi élasto-plastique linéaire avec écrouissage pour l'acier

Calage sur test expérimental

Introduction	Modèles	Résultats	Conclusion
	00 000	0 00	
Modèle mécanique			

Modèle mécanique : chargement

2 cas de chargement testés :

Réponse structure :

- Chargement pushover
- Calcul quasi-statique

- Signal avalancheux
- Calcul dynamique

quasi-statique si $t > t_{str} = 0,07 s$

Chargement introduit dans le modèle pour une avalanche de neige dense = chargement de type pushover

JFMS 2014

Introduction	Modèles	Résultats	Conclusion
	000	00	
Modèle probabiliste			

Modèle probabiliste : Critères de défaillance

• 2 critères = 2 modes de défaillance

$$G_1(X) = 0,95 f_c^c - \sigma_{max}^c$$
 (béton)

$$G_2(X) = 0,95 f_u^s - \sigma_{max}^s$$
 (acier)

• Calcul probabilité de défaillance

$$D_f = D_f \{G_1(x) \le 0\} \bigcup D_f \{G_2(x) \le 0\}$$

Introduction	Modèles	Résultats	Conclusion
	00	0	
Marilla and ball there	000	00	

Modèle probabiliste : Variables aléatoires

Paramètre	Symbole	Distribution	Moyenne	Coefficient de variation	Référence
Masse volumique du béton	ρς	Déterministe	2500 kg/m ³		
Module d'Young du béton	E _y	Lognormale	38840 MPa	0,10	(Mirza,1979)
Coefficient de Poisson du béton	ν	Déterministe	0,24		
Limite en compression du béton	fc	Lognormale	80 MPa	0,18	(MacGregor,1983)
Limite en traction du béton	f _t ^c		$0, 3 (f_c^c)^{2/3}$		(Eurocode 2)
Masse volumique de l'acier	ρ \$	Déterministe	7500 kg/m ³		
Module d'Young de l'acier	E _y	Déterministe	217000 MPa		
Coefficient de Poisson de l'acier	ν s	Déterministe	0,3		
Limite élastique de l'acier	f _y	Normale	575 MPa	0,10	(MacGregor,1983)
Module d'écrouissage de l'acier	Eh	Déterministe	1310 MPa		
Déformation ultime de l'acier	€u	Normale	0,037	0,10	(Siviero,1993)

Introduction	Modèles	Résultats	Conclusion
	000	00	
Modèle probabiliste			

Modèle probabiliste : Méthodes de calcul

2 méthodes de calcul de la probabilité de défaillance :

 Analyse distribution de sortie (Méthode des noyaux ou Kernel Smoothing)

$$P_f = \frac{1}{nh} \sum_{i=1}^n K\left(\frac{x-x_i}{h}\right)$$

n : nombre de valeurs de l'échantillon h : paramètre de lissage K : fonction noyau satisfaisant $\int K(x) dx = 1$ (ici, loi normale centrée réduite) Analyse de probabilité de dépassement de valeurs seuils (Simulations Monte-Carlo)

$$P_f = \frac{1}{n} \sum_{i=1}^n I(x_i)$$

n : nombre de valeurs de l'échantillon *I* : fonction indicatrice = 1 si $G(X) \le 0$ et 0 dans le cas contraire

Introduction	Modèles	Résultats	Conclusion
	00 000	• •	
Principos			

Courbes de vulnérabilité et de fragilité

Courbes de vulnérabilité	Courbes de fragilité	
Approche déterministe	Approche probabiliste	
Indice de dommages	Probabilité de défaillance	
$(ici, \frac{\delta_{max}}{\delta_{\mu}})$	en fonction intensité aléa	
en fonction intensité aléa		

Indice de dommage ou probabilité de défaillance :

= 1 si ruine

Introduction O	Modèles oo ooo	Résultats ○ ●○	Conclusion
Résultats			

Courbes de vulnérabilité

pour différents états limites

Introduction	Modèles	Résultats	Conclusion
	000		
Résultats			

Courbes de fragilité

Résultats 0 00 Conclusion

Conclusion et Perspectives

Conclusions

- Modèle probabiliste couplé à un modèle EF
- Courbes de vulnérabilité ▷ Evolution endommagement avant défaillance de la structure
- Courbes de fragilité > Plage de défaillance liée aux incertitudes matériaux

Perspectives

- Autres sources d'incertitudes
- Etude de sensibilité
- Analyse de risque

Modèle: 00 000 Résultats 0 00 Conclusion

Photo Pierre Beghin

Merci pour votre attention