

Etude fiabiliste d'une dent déflectrice en béton armé sollicitée par une avalanche de neige dense

Ousset¹, D. Bertrand², M. Brun²,
A. Limam², M. Naaïm¹
(Irstea Grenoble¹ - INSA Lyon²)

- Introduction
- 2 Modèles
 - Modèle mécanique
 - Modèle probabiliste
- 3 Résultats
 - Principes
 - Résultats
 - 4 Conclusion

- Introduction
- 2 Modèles
 - Modèle mécanique
 - Modèle probabiliste
- Résultats
 - Principes
 - Résultats
 - 4 Conclusion

- Introduction
- 2 Modèles
 - Modèle mécanique
 - Modèle probabiliste
- Résultats
 - Principes
 - Résultats
- 4 Conclusion

- Introduction
- Modèles
 - Modèle mécanique
 - Modèle probabiliste
- Résultats
 - Principes
 - Résultats
- Conclusion

Problématique

- Evènement de 1999 dans le couloir de Taconnaz (vallée de Chamonix)
 - Nécessité de progresser dans la connaissance des interactions entre avalanches et structures
- Objectif: Etude de la vulnérabilité des structures en BA à travers un exemple

Problématique

- Evènement de 1999 dans le couloir de Taconnaz (vallée de Chamonix)
 - Nécessité de progresser dans la connaissance des interactions entre avalanches et structures
- Objectif : Etude de la vulnérabilité des structures en BA à travers un exemple

Problématique

- Evènement de 1999 dans le couloir de Taconnaz (vallée de Chamonix)
 - Nécessité de progresser dans la connaissance des interactions entre avalanches et structures
- Objectif : Etude de la vulnérabilité des structures en BA à travers un exemple

Modèle mécanique : caractéristiques

Méthode éléments finis (Cast3M)

Modèle 2D (éléments QUA4 et SEG2)

 Loi élasto-plastique à 2 critères de plasticité pour le béton et loi élasto-plastique linéaire avec écrouissage pour l'acier

Calage sur test expérimental

2 cas de chargement testés :

- Chargement pushover
- Calcul quasi-statique

Signal avalancheux

Calcul dynamique

Réponse structure :

quasi-statique si $t > t_{str} = 0,07 s$

Chargement introduit dans le modèle pour une avalanche de neige dense = chargement de type pushover

Modèle probabiliste : Critères de défaillance

• 2 critères = 2 modes de défaillance

$$G_1(X) = 0.95 f_c^c - \sigma_{max}^c$$
 (béton)

$$G_2(X) = 0.95 f_u^s - \sigma_{max}^s$$
 (acier)

Calcul probabilité de défaillance

$$D_f = D_f \{G_1(x) \leq 0\} \bigcup D_f \{G_2(x) \leq 0\}$$

I. Ousset JFMS 2014 6 / 13

Modèle probabiliste

Modèle probabiliste : Variables aléatoires

Paramètre	Symbole	Distribution	Moyenne	Coefficient de variation	Référence
Masse volumique du béton	ρς	Déterministe	2500 kg/m ³		
Module d'Young du béton	E _y	Lognormale	38840 MPa	0,10	(Mirza,1979)
Coefficient de Poisson du béton	ν^{c}	Déterministe	0,24		
Limite en compression du béton	fc	Lognormale	80 MPa	0,18	(MacGregor,1983)
Limite en traction du béton	f _t ^c		$0,3 (f_c^c)^{2/3}$		(Eurocode 2)
Masse volumique de l'acier	$\rho^{\mathbf{s}}$	Déterministe	7500 kg/m ³		
Module d'Young de l'acier	E _y	Déterministe	217000 MPa		
Coefficient de Poisson de l'acier	ν*	Déterministe	0,3		
Limite élastique de l'acier	f _y	Normale	575 MPa	0,10	(MacGregor,1983)
Module d'écrouissage de l'acier	E	Déterministe	1310 MPa		
Déformation ultime de l'acier	€u	Normale	0,037	0,10	(Siviero,1993)

I. Ousset JFMS 2014 7 / 13

Modèle probabiliste : Méthodes de calcul

2 méthodes de calcul de la probabilité de défaillance :

 Analyse distribution de sortie (Méthode des noyaux ou Kernel Smoothing)

$$P_f = \frac{1}{nh} \sum_{i=1}^n K\left(\frac{x - x_i}{h}\right)$$

n : nombre de valeurs de l'échantillon h : paramètre de lissage K : fonction noyau satisfaisant $\int K(x) dx = 1$ (ici, loi normale centrée réduite)

 Analyse de probabilité de dépassement de valeurs seuils (Simulations Monte-Carlo)

$$P_f = \frac{1}{n} \sum_{i=1}^n I(x_i)$$

n : nombre de valeurs de l'échantillon I: fonction indicatrice = 1 si $G(X) \leq 0$ et 0 dans le cas contraire

Principes

Courbes de vulnérabilité et de fragilité

Courbes de vulnérabilité	Courbes de fragilité		
Approche déterministe	Approche probabiliste		
Indice de dommages	Probabilité de défaillance		
$(ici, \frac{\delta_{max}}{\delta_u})$	en fonction intensité aléa		
en fonction intensité aléa			

Indice de dommage ou probabilité de défaillance :

= 0 si non endommagement

= 1 si ruine

I. Ousset JFMS 2014 9 / 13

Courbes de vulnérabilité

pour différents états limites

I. Ousset JFMS 2014 10 / 13

Courbes de fragilité

(Monte-Carlo)

I. Ousset JFMS 2014 11 / 13

Conclusion et Perspectives

Conclusions

- Modèle probabiliste couplé à un modèle EF
- Courbes de vulnérabilité ▷ Evolution endommagement avant défaillance de la structure
- Courbes de fragilité ▷ Plage de défaillance liée aux incertitudes matériaux

Perspectives

- Autres sources d'incertitudes
- Etude de sensibilité
- Analyse de risque

I. Ousset JFMS 2014 12 / 13

Photo Pierre Beghin

Merci pour votre attention