

Analyse fiabiliste d'un mur en béton armé soumis à une avalanche de neige et modélisé par éléments finis et modèle masse-ressort

Favier, P.<sup>(1,2)</sup>, Bertrand, D. <sup>(1)</sup>, Eckert, N. <sup>(2)</sup>, Naaim, N. <sup>(2)</sup>



## Summary

#### Introduction

- Context
- Vulnerability assessment extension

### 2 Methods

- RC wall description
- Mechanical approaches
- Reliability framework

## Results





## Snow avalanche hazard

- threatens mountain community (people, buildings, communication networks, skiers...)
- need for long term mitigation measures



 $Figure: \mbox{ Dense snow avalanche consequence: one building was destroyed (Le Sappey en Chartreuse - VALLA F. - Isère)$ 



Figure: February 1999 avalanche of Montroc: 17 destroyed buildings and 12 deaths (Mont-Blanc, French Alps)

 $\Longrightarrow$  Risk improvement: precise quantification of avalanche hazard and **vulnerability of exposed elements** 

イロト イポト イヨト イヨト

#### Literature curves:

- Wilhelm, 1998: vulnerability of concrete buildings with reinforcement, piecewise according to damage thresholds
- Fuchs, 2007: economical approaches
- Bertrand *et al.*, 2010: numerical simulation
- Barbolini *et al.*, 2004: empirical estimates



Figure: Vulnerability curves from different literature sources (Naaim *et al.*, 2008)

Context Vulnerability assessment extension

#### Reliability based curves:

- Definition of several limit states based on moments calculation
- Easy to compute but rough model using abacus
- Collapse pressure using yield line theory



Figure: Vulnerability curves using simple engineering models (Favier et al., 2014)

## RC wall features

- Wall with two supported edges composed of concrete and steel bars orthogonally disposed.
- Concrete and steel parameters:  $f_{c28}, f_t, \varepsilon_{uc}, f_y, \varepsilon_{uk}$
- Uniformly loaded

Figure: Dwelling house impacted by a snow avalanche (a) - RC wall geometry (b-c)



Introduction **Methods** Results Conclusion and Perspectives **RC wall description** Mechanical approaches Reliability framework

# RC behaviour



Figure: Concrete, steel and RC behaviour.

## RC wall models

- FEM model: accurate but time consuming.
- Mass-spring model: general description behaviour of the wall but computation time saving.
- Yield line theory: only models the collapse of the wall, no intermediate step.

## Models implementation

#### FEM

The finite element model (FEM) is built with Cast3m software. Reinforcing steel is modelled using linear segments. Concrete is modelled with quadrilateral elements with a quadratic approximation function.

### Mass-spring

The moment-curvature curve of the system is built by discretizing along the length of the section. Stress distribution is defined, then the corresponding strain diagram is established.

#### Yield line theory

Under an external loading, cracks will develop to form a pattern of "yield lines" until a mechanism is formed Johansen (1962). The ultimate load is calculated from the equality between the external energy  $(W_{ext})$  and the internal energy  $(W_{int})$ .

(D) (A) (A)

# Validation of the model

lable: Ultimate displacement and ultimate pressure provided by the three models.

| Models            | Ultimate pressure | Ultimate displacement |
|-------------------|-------------------|-----------------------|
| Mass-spring       | $7.58 \ kPa$      | $0.0923 \ m$          |
| Finite element    | $7.65 \ kPa$      | 0.1283 m              |
| Yield line theory | $7.56 \ kPa$      | —                     |

Figure: Load-displacement curve obtained with finite element model and mass-spring model. Pushover test is done on the structure until collapse.



# Reliability methods

## Statistical distribution: normal distributions with a 5% ${\rm CoV}$

- First set:  $l_x$ ,  $l_y$ , h,  $f_c$ ,  $f_y$ ,  $f_t$ ,  $\rho_s$
- Second set:  $f_c$ ,  $f_y$ ,  $f_t$ ,  $\rho_s$
- Third set:  $f_c, f_y, f_t$

## Failure probability calculation

$$P_f = P[r \le s] = \int_{-\infty}^s f_R(r) dr.$$

(r: resistance, s: sollicitation)

## Reliability methods to approximate fragility curves

- N Monte Carlo simulations
- Kernel smoothing fitting
- $\bullet\,$  Taylor expansion to approximate  $1^{st}$  and  $2^{nd}$  moments of the outputs' distribution

(1)

# Reliability methods

#### Kernel smoothing

Kernel smoothing enables to approximate  $\hat{p}(y)$  considering a normal kernel K, with Silverman rule (Wand *et al.*, 1995) to evaluate the optimal bandwidth h:

$$\hat{p}(y) = \frac{1}{nh} \sum_{i=1}^{n} K(\frac{y - Y_i}{h}).$$
(2)

# Taylor expansion to approximate $1^{st}$ and $2^{nd}$ moments of the outputs distribution

No covariances are considered between input variables:

$$\hat{\mu}_{Y} = M(\mu_{X}) + \frac{1}{2} \sum_{i=1}^{n} \frac{\partial^{2} M}{\partial^{2} X_{i}}(\mu_{X}) . \sigma_{X_{i}}, \qquad (3)$$

$$\hat{\sigma}_Y^2 = \sum_{i=1}^n \left(\frac{\partial M}{\partial X_j}(\mu_X)\right)^2 . \sigma_{X_i}.$$
(4)

Introduction Methods **Results** Conclusion and Perspectives

# Vulnerability curves (fragility curves)



Figure: Vulnerability depending on the reliability methods used.

# Vulnerability curves



Figure: Vulnerability depending on the number of input parameters.



Figure: Effect of the steel density on fragility curves.

#### Take home message

- Systematic methodology approach to assess fragility curves based on: reliability methods and not time-consuming mechanical modeling
- Fragility curves set available for risk analysis
- Increase of knowledge concerning the vulnerability behavior of RC structures
- Possibility to link fragility curves of buildings to human vulnerability used in risk (not shown today)

#### Perspectives

- Use more complex mechanical modeling including a strain rate effect
- Use real avalanche signal
- Quantify risk sensibility to fragility curves

(四)
 (四)

## Thank you for your attention. Any questions ?



イロト イボト イヨト イヨト

- M Barbolini, F Cappabianca, and R Sailer, Empirical estimate of vulnerability relations for use in snow avalanche risk assessment, RISK ANALYSIS IV (Brebbia, CA, ed.), 2004, pp. 533–542.
- D. Bertrand, M. Naaim, and M. Brun, Physical vulnerability of reinforced concrete buildings impacted by snow avalanches, NHESS 10 (2010), no. 7, 1531–1545 (English).
- N. Eckert, C.J. Keylock, D. Bertrand, E. Parent, P. Favier, and M. Naaim, Quantitative risk and optimal design approaches in the snow avalanche field: review and extensions, CRST 79-80 (2012), 1-19.



- S. Fuchs, M. Thoni, M. C. McAlpin, U. Gruber, and M. Bründl, Avalanche hazard mitigation strategies assessed by cost effectiveness analyses and cost benefit analyses evidence from davos, switzerland, Nat Hazards 41 (2007), 113?129.
- K.W. Johansen, Yield line theory, 1962.
- M. Naaim, D. Bertrand, T. Faug, S. Fuchs, F. Cappabianca, and M. Bründl, Vulnerability to rapid mass movements, Tech. report, Irasmos - WP4 Project no. 018412, 2008.
  - C. Wilhelm, Quantitative risk analysis for evaluation of avalanche protection projects, Norwegian Geotechnical Institute, Norway, 1998.
- M.P. Wand and M.C. Jones, Kernel smoothing, 1995.

Introduction Methods Results Conclusion and Perspectives

# Spring-mass model



Figure: Mass-spring system and cross-section of the RC beam (a), stress diagram (b), strain diagram (c).



Conclusion and Perspectives

# Spring-mass model



Figure: (a) Bilinear moment curvature bending relation of the beam; (b) corresponding bilinear load-displacement relation of then equivalent SDOF model Carta et Stochino (2013).

#### Newmark solving scheme to solve:

$$\begin{split} M_{E,el} \frac{d^2 v_E(t)}{dt^2} + K_{E,el}(t) v_E(t) &= P_E(t) \text{ for } 0 \le v_E \le v_{Ey} , \\ M_{E,pl} \frac{d^2 v_E(t)}{dt^2} + K_{E,pl}(t) v_E(t) + (K_{E,el}(t) - K_{E,pl}(t)) v_{Ey} = P_E(t) \text{ for } v_{Ey} \le v_E \le v_{Eu} , \\ 16/16 & \text{Envier, P.} \quad \text{Vulnerabilité à l'avalanche d'un nur en BA} \end{split}$$