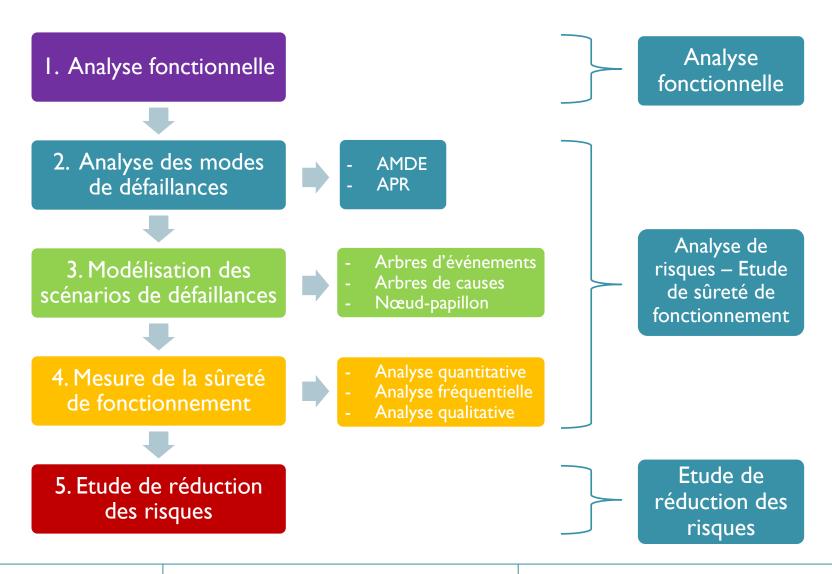


Le retour d'expérience des études de dangers de barrages en France

Simon DIEUDONNÉ

Laurent PEYRAS

Paul ROYET


Contexte des études de dangers de barrages

- Les barrages
 - Ouvrages de génie civil constituant des retenues d'eau importantes
 - Danger caractérisé par un lâcher d'eau en aval

- Les études de dangers
 - Evaluer la fiabilité des barrages vis-à-vis des différents mécanismes et exposer les risques pour la sécurité publique
 - Evaluer l'occurrence de la probabilité des scénarios accidentels

Méthodes de sûreté de fonctionnement

I-Cadre général II-Analyse des études de dangers III-Conclusions et perspectives

Objectifs de la communication

Retour d'expérience sur le plan de la modélisation et de l'évaluation de la sûreté de fonctionnement

> Diversité des pratiques employées

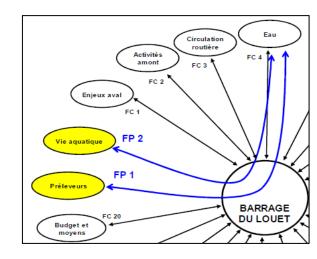
Evaluation des avantages et inconvénients

Les éventuelles difficultés dans leur application

Un échantillon de 15 études de dangers et 7 BET

Barrages en remblai (terre, enrochements)

Barrages poids (BCR, maçonnerie)


Barrages voûtes

Barrages à contreforts

Etape I: Analyse fonctionnelle du barrage

Analyse fonctionnelle externe

- 4/15 des études analysées :
 - blocs diagrammes fonctionnels → mise en interaction du système barrage avec son environnement;
 - identification des fonctions principales de l'ouvrage.

Analyse fonctionnelle interne

- 9/15 des études analysées :
- analyse structurelle développée;
- identification des fonctions de conception des composants l'ouvrage;
- 5/15 des études analysées :
 - analyse structurelle incomplète qui n'analyse pas l'ensemble de la granularité de l'ouvrage → omission de fonctions.

Ensemble	Composant	Fonctions de conception	
Fondation	Fondation aval	Résister au poids de l'ouvrage aval et à la poussée de l'eau	
	Fondation amont	Résister au poids de l'ouvrage	
	Clé d'étanchéité et paroi moulée	Limiter les infiltrations d'eau en fondation	
	Puits de décompression	Drainer la fondation aval	

Etape 2 : Analyse des modes de défaillances (1/2)

Analyse Préliminaire des Risques

(10/15 des études de dangers)

- 6/10 des APR analysées :
 - nb de modes de défaillances < nb de **fonctions**
 - repose essentiellement sur une connaissance experte de l'ouvrage et peut se suffire d'une analyse fonctionnelle sommaire → méthode non exhaustive.

Elément de l'ouvrage	Condition d'exploitation	Mode de défaillance	Conséquence	Cinétique post- accident	Gravité
Barrage, appuis et fondations	Toutes	Rupture du barrage	Onde de submersion ; Baisse soudaine du niveau de la retenue	Rapide	Grave

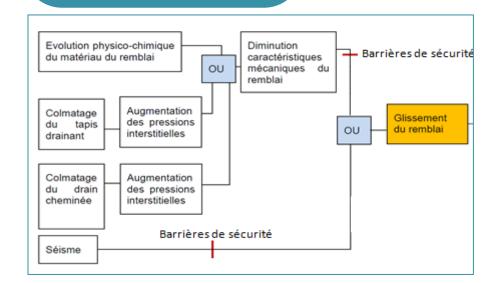
Rappel: une APR identifie les composants dangereux des barrages en examinant comment ils pourraient mener à une défaillance plus ou moins grave et en identifiant les événements conduisant à la situation dangereuse. L'effet et la gravité de l'accident potentiel sont évalués et une ou plusieurs mesures préventives sont indiquées.

Etape 2 : Analyse des modes de défaillances (2/2)

Analyse des Modes de Défaillances et des Effets

(5/15 des études de dangers)

méthode exhaustive adaptée aux études présentant une analyse fonctionnelle de qualité.

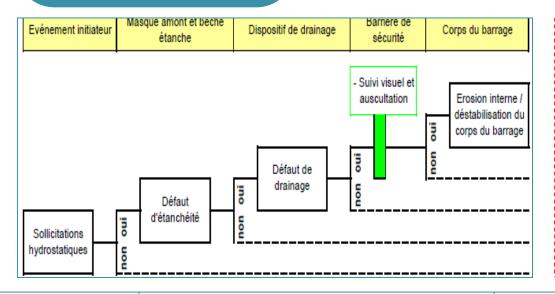

Composant	Fonctions	Causes possibles de défaillance	Effets possibles	Indicateurs	Moyens de détection	
		Réalisation		Augmentatio	Observation visuelle	
Remblai amont	Assurer l'étanchéité du barrage	Ecoulement possible par mauvaise mise en œuvre Evolution des	Rupture par effet renard dans le talus aval	n du débit de fuite Turbidité de l'eau	Mesures de débits de fuite, de piézométrie, de cellules de pression	
		matériaux		i eau		
	Participer à la stabilité interne de l'ouvrage	Evolution des caractéristiques mécaniques du remblai (pression interstitielle)	Rupture par ouverture d'une brèche	Tassements	Observation visuelle	
			Mouveme nt de remblai	Fissures	Mesures topographiques	

Rappel: une AMDE présente pour l'ensemble des couples {composant ; fonction} une identification des modes de défaillances de la fonction considérée et une caractérisation des causes de ces modes de défaillances et de leurs effets sur les composants du barrage.

Etape 3 : Modélisation des scénarios de défaillances (1/2)

Méthode du nœud-papillon (12/15 études de dangers)

- en réalité, la méthode appliquée s'apparente plus à celle des arbres de causes;
- repose essentiellement sur une connaissance experte de l'ouvrage et peut se suffire d'une APR sommaire → méthode non exhaustive.



Rappel: la méthode du nœudpapillon expose les scénarios d'accidents en partant des causes initiales de l'accident jusqu'aux conséquences. Elle combine un arbre de causes, qui décrit les scénarios conduisant à un ERC, et arbre d'événements qui l'enchainement expose des conséquences découlant de cet ERC.

Etape 3 : Modélisation des scénarios de défaillances (2/2)

Méthode des arbres d'événements (I/I5 étude de dangers)

- méthode exhaustive adaptée aux **AMDE** de qualité;
- permet le calcul des probabilités de manière semi-quantitative ou quantitative.

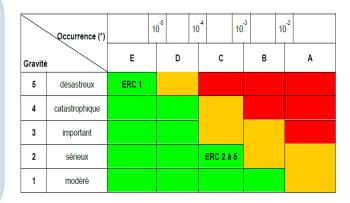
Rappel: la méthode des arbres d'événements décrit scénarios les fonctionnement du barrage à d'un partir événement initiateur. La dérive système est déterminée en envisageant systématiquement fonctionnement ou non des barrières de sécurité.

Etape 4 : Mesure de la sûreté de fonctionnement

Probabilités d'occurrence

- Approche semi-quantitative (9/15 des études analysées) :
 - cotation des événements élémentaires par classes de probabilités;
 - calcul de l'occurrence des scénarios par combinaisons de probabilités;
- Approche qualitative (6/15 des études analysées):
 - évaluation globale des scénarios à dire d'expert.

Gravité des conséquences


(en nombre de personnes exposées)

- 13/15 des études analysées :
 - estimation par superposition cartographie onde de rupture/carte occupation des sols ;
- 2/15 des études analysées :
 - échelle de gravité construite relativement à des crues équivalentes sans prendre en compte les enjeux menacés.

Etape 5 : Analyse et étude de réduction des risques

Analyse de risques (toutes les études de dangers)

- acceptabilité du risque des scénarios prononcée sur une matrice de criticité (probabilité d'occurrence VS gravité des conséquences);
- très peu d'études de dangers procèdent à une évaluation mathématique du risque.

Etude de réduction des risques (toutes les études

de dangers)

mesures de réduction des risques présentées par catégories d'actions et avec leur efficacité espérée.

Conclusions et perspectives

Pratique actuelle repose sur une modélisation simple

 L'expression du besoin de recherche tend vers des analyses de plus en plus quantitatives

- Qui permettrait d'envisager des couplages de sûreté de fonctionnement-fiabilité :
 - incluant des modélisations probabilistes des données d'entrées ;
 - prenant en compte le caractère aléatoire des sollicitations et l'incertitude des propriétés des résistances;
 - proposant des modèles spécialisés pour le traitement expertise.