
Iden%fica%on	
  bayésienne	
  des	
  variables	
  aléatoires	
  pour	
  la	
  
modélisa%on	
  de	
  la	
  pénétra%on	
  des	
  chlorures	
  dans	
  les	
  

structures	
  en	
  béton	
  armé	
  	
  

	
  
E.	
  BASTIDAS-­‐ARTEAGA,	
  F.	
  SCHOEFS	
  et	
  S.	
  BONNET	
  

	
  
LUNAM	
  Université,	
  Université	
  de	
  Nantes-­‐Ecole	
  Centrale	
  Nantes,	
  GeM,	
  	
  
Ins%tut	
  de	
  Recherche	
  en	
  Génie	
  Civil	
  et	
  Mécanique,	
  CNRS	
  UMR	
  6183	
  

	
  
emilio.bas%das@univ-­‐nantes.fr	
  	
  



/17	
  

Probléma%que	
  
2	
  

►  Corrosion	
  →	
  réduc%on	
  de	
  la	
  capacité	
  
portante	
  des	
  structures	
  :	
  
–  perte	
  de	
  la	
  sec%on	
  transversale	
  des	
  

aciers	
  ;	
  
–  perte	
  d’adhérence	
  entre	
  le	
  béton	
  et	
  les	
  

aciers	
  et	
  
–  fissura%on	
  et	
  éclatement	
  du	
  béton.	
  

►  Dégâts	
  importants	
  après	
  20	
  ou	
  30	
  ans	
  
[Kumar	
  Mehta,	
  1997]	
  →	
  inspec%on	
  et	
  
répara%on.	
  

Modélisa%on	
  de	
  la	
  pénétra%on	
  des	
  chlorures	
  →	
  cruciale	
  pour	
  op%miser	
  les	
  
opéra%ons	
  de	
  maintenance	
  sur	
  ces	
  ouvrages.	
  
	
  

Besoins	
  de	
  la	
  modélisa%on	
  :	
  
•  Modèles	
  de	
  dégrada%on	
  per%nents	
  [Saeba	
  et	
  al.,	
  1993],	
  [Samson	
  &	
  Marchand,	
  

2007],	
  [Bas%das-­‐Arteaga	
  et	
  al.,	
  2011]	
  
•  Données	
  d’entrée	
  représenta%ves	
  du	
  problème	
  traité	
  (aléa	
  lié	
  aux	
  propriétés	
  du	
  

matériau,	
  paramètres	
  du	
  modèle,	
  climat,	
  …)	
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  modèle	
  	
  
•  modèle	
  (erreur	
  du	
  modèle)	
  
•  ac%ons	
  environnementales	
  (T,	
  HR,	
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Iden%fica%on	
  à	
  par%r	
  de	
  mesures	
  
réelles	
  [Duracrete,	
  2000]	
  

	
  
	
  
	
  
	
  
avec	
  :	
  
•  Cs,D	
  :	
  concentra%on	
  de	
  chlorures	
  à	
  

la	
  surface	
  
•  Do	
  :	
  coefficient	
  de	
  diffusion	
  

effec%ve	
  des	
  ions	
  chlorures	
  
•  nD	
  :	
  vieillissement	
  
•  ke	
  :	
  type	
  d’environnement	
  
•  kt	
  :	
  méthode	
  de	
  détermina%on	
  de	
  

Do	
  	
  
•  kc	
  :	
  temps	
  de	
  cure	
  
•  t0	
  :	
  temps	
  →	
  mesure	
  de	
  Do	
  	
  

Mise	
  à	
  point	
  de	
  la	
  méthode	
  
[Tuul,	
  1982]	
  

	
  
	
  
	
  
	
  
avec	
  :	
  
	
  
•  Cs	
  :	
  concentra%on	
  de	
  chlorures	
  à	
  la	
  

surface	
  
•  D	
  :	
  coefficient	
  de	
  diffusion	
  effec%ve	
  

des	
  ions	
  chlorures	
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  diffusion	
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Modèles	
  de	
  diffusion	
  adoptés	
  :	
  
	
  

steel/concrete interface generates concrete cracking, 
which plays an important role in the steel corrosion 
rate when excessive concrete cracking is reached. 
Based on the previous considerations, the corrosion 
process is divided into two stages namely ‘corrosion 
initiation’ and ‘corrosion propagation’. The follow-
ing sections describe firstly the physical phenomena 
as well as present the adopted analytical models to 
determine the time to corrosion initiation caused by 
chloride ingress. Afterwards, it presents the Bayesi-
an formulation to identify the input random variables 
from real measurements. 

2.1 Simplified model for chloride diffusion 

The second law of diffusion of Fick is generally 
used to model chloride flow into concrete (Tuutti, 
1982). Assuming that concrete is homogeneous, iso-
tropic, saturated and subjected to a constant concen-
tration of chlorides at the surface Cs, the solution of 
differential equations is expressed as the concentra-
tion of chloride ions C(x, t) at depth x and time t, as 
follows: 

C(x,t) =Cs 1− erf
x
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where D is the effective chloride diffusion coeffi-
cient and erf (·) is the error function. The Bayes the-
orem can be used to calculate the probability distri-
butions of the random variables in this problem 
(Naïm et al., 2007). In this case, the main purpose of 
the Bayesian identification is to identify the ran-
domness of D and Cs. Assuming that D and Cs are 
two independent random variables (eq. (3)), the 
probability of assessment of a chloride concentration 
at a point x and a given time t, p(C(x, t)), writes 
(Nguyen, 2007): 
p C(x,t)( ) = p C(x,t) D,Cs( ) p D,Cs( )

D,Cs

∑  (2) 

with 
 p D,Cs( ) = p D( ) p Cs( )  (3) 

In eq. (2), the conditional probability p(C(x, t)| D, 
Cs) must already be known. This conditional proba-
bility relates the chloride content C(x, t) to the mate-
rial characteristics. In other words, it accounts for 
transfer mechanisms, such as the modeled by eq. (1), 
in a purely probabilistic form. This probability could 
be computed based on the conditional probability ta-
ble (CPT) of the BN. The CPT can be determined 
from:  

1. a given model –e.g., eq. (1) or  
2. expert knowledge.  
Once p(C(x, t)) is computed, a posteriori probabil-

ity distributions (distributions to be identified) can 
be calculated from a set of measurements of C(x, t). 
p(C(x, t)|o) represents the probability distribution of 

C(x, t) given evidence o. In this case, chloride pro-
files are used as evidence, assuming that measure-
ments are perfects. Thus, for identifying the proba-
bility distribution of the effective chloride diffusion 
coefficient, the application of the Bayes theorem 
gives: 
p D o( ) = p D C(x,t)( ) p C(x,t) o( )   (4) 

with 

 p D C(x,t)( ) =
p C(x,t) D( ) p D( )

p C(x,t)( )
 (5) 

Similarly for the identification of the distribution 
of the concentration of chlorides at the surface Cs: 
p Cs o( ) = p Cs C(x,t)( ) p C(x,t) o( )   (6) 

with 

 p Cs C(x,t)( ) =
p C(x,t) Cs( ) p Cs( )

p C(x,t)( )  (7) 

The determination of conditional probabilities is 
carried out herein by Bayesian learning and infer-
ence using the Netica® software. Note that the error 
of the model can be also updated by a BN as sug-
gested by (Deby et al., 2011).  

2.2 Duracrete model 

The closed-form solution of Fick's diffusion law can 
be easily used to predict the time to corrosion initia-
tion. However, eq. (1) is valid only when RC struc-
tures are saturated and subjected to constant concen-
tration of chlorides on the exposed surfaces. These 
conditions are rarely present for real structures be-
cause concrete is a heterogeneous material that is 
frequently exposed to time-variant surface chloride 
concentrations. Besides, this solution does not con-
sider chloride binding capacity, concrete aging and 
other environmental factors as temperature and hu-
midity (Saetta et al, 1993; Bastidas-Arteaga et al, 
2010, 2011). 

The European Union project (Duracrete, 2000) 
proposes an expression similar to eq. (1) which con-
siders the influence of material properties, environ-
ment, concrete aging and concrete curing on the 
chloride diffusion coefficient: 

C(x,t) =Cs,D 1− erf
x
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where Cs,D is the chloride surface content computed 
for this model, ke is a factor taking into account the 
characteristics of the environment (ke = 0.924 for a 
tidal zone and ke = 0.676 for an atmospheric zone), kt 
is a factor defined according to the method used to 
determine the diffusion coefficient Do, kc is a factor 
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where Cs,D is the chloride surface content computed 
for this model, ke is a factor taking into account the 
characteristics of the environment (ke = 0.924 for a 
tidal zone and ke = 0.676 for an atmospheric zone), kt 
is a factor defined according to the method used to 
determine the diffusion coefficient Do, kc is a factor 
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where Cs,D is the chloride surface content computed 
for this model, ke is a factor taking into account the 
characteristics of the environment (ke = 0.924 for a 
tidal zone and ke = 0.676 for an atmospheric zone), kt 
is a factor defined according to the method used to 
determine the diffusion coefficient Do, kc is a factor 
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(Naïm et al., 2007). In this case, the main purpose of 
the Bayesian identification is to identify the ran-
domness of D and Cs. Assuming that D and Cs are 
two independent random variables (eq. (3)), the 
probability of assessment of a chloride concentration 
at a point x and a given time t, p(C(x, t)), writes 
(Nguyen, 2007): 
p C(x,t)( ) = p C(x,t) D,Cs( ) p D,Cs( )

D,Cs

∑  (2) 

with 
 p D,Cs( ) = p D( ) p Cs( )  (3) 

In eq. (2), the conditional probability p(C(x, t)| D, 
Cs) must already be known. This conditional proba-
bility relates the chloride content C(x, t) to the mate-
rial characteristics. In other words, it accounts for 
transfer mechanisms, such as the modeled by eq. (1), 
in a purely probabilistic form. This probability could 
be computed based on the conditional probability ta-
ble (CPT) of the BN. The CPT can be determined 
from:  

1. a given model –e.g., eq. (1) or  
2. expert knowledge.  
Once p(C(x, t)) is computed, a posteriori probabil-

ity distributions (distributions to be identified) can 
be calculated from a set of measurements of C(x, t). 
p(C(x, t)|o) represents the probability distribution of 

C(x, t) given evidence o. In this case, chloride pro-
files are used as evidence, assuming that measure-
ments are perfects. Thus, for identifying the proba-
bility distribution of the effective chloride diffusion 
coefficient, the application of the Bayes theorem 
gives: 
p D o( ) = p D C(x,t)( ) p C(x,t) o( )   (4) 

with 

 p D C(x,t)( ) =
p C(x,t) D( ) p D( )

p C(x,t)( )
 (5) 

Similarly for the identification of the distribution 
of the concentration of chlorides at the surface Cs: 
p Cs o( ) = p Cs C(x,t)( ) p C(x,t) o( )   (6) 

with 

 p Cs C(x,t)( ) =
p C(x,t) Cs( ) p Cs( )

p C(x,t)( )  (7) 

The determination of conditional probabilities is 
carried out herein by Bayesian learning and infer-
ence using the Netica® software. Note that the error 
of the model can be also updated by a BN as sug-
gested by (Deby et al., 2011).  

2.2 Duracrete model 

The closed-form solution of Fick's diffusion law can 
be easily used to predict the time to corrosion initia-
tion. However, eq. (1) is valid only when RC struc-
tures are saturated and subjected to constant concen-
tration of chlorides on the exposed surfaces. These 
conditions are rarely present for real structures be-
cause concrete is a heterogeneous material that is 
frequently exposed to time-variant surface chloride 
concentrations. Besides, this solution does not con-
sider chloride binding capacity, concrete aging and 
other environmental factors as temperature and hu-
midity (Saetta et al, 1993; Bastidas-Arteaga et al, 
2010, 2011). 

The European Union project (Duracrete, 2000) 
proposes an expression similar to eq. (1) which con-
siders the influence of material properties, environ-
ment, concrete aging and concrete curing on the 
chloride diffusion coefficient: 
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where Cs,D is the chloride surface content computed 
for this model, ke is a factor taking into account the 
characteristics of the environment (ke = 0.924 for a 
tidal zone and ke = 0.676 for an atmospheric zone), kt 
is a factor defined according to the method used to 
determine the diffusion coefficient Do, kc is a factor 

steel/concrete interface generates concrete cracking, 
which plays an important role in the steel corrosion 
rate when excessive concrete cracking is reached. 
Based on the previous considerations, the corrosion 
process is divided into two stages namely ‘corrosion 
initiation’ and ‘corrosion propagation’. The follow-
ing sections describe firstly the physical phenomena 
as well as present the adopted analytical models to 
determine the time to corrosion initiation caused by 
chloride ingress. Afterwards, it presents the Bayesi-
an formulation to identify the input random variables 
from real measurements. 

2.1 Simplified model for chloride diffusion 

The second law of diffusion of Fick is generally 
used to model chloride flow into concrete (Tuutti, 
1982). Assuming that concrete is homogeneous, iso-
tropic, saturated and subjected to a constant concen-
tration of chlorides at the surface Cs, the solution of 
differential equations is expressed as the concentra-
tion of chloride ions C(x, t) at depth x and time t, as 
follows: 
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where D is the effective chloride diffusion coeffi-
cient and erf (·) is the error function. The Bayes the-
orem can be used to calculate the probability distri-
butions of the random variables in this problem 
(Naïm et al., 2007). In this case, the main purpose of 
the Bayesian identification is to identify the ran-
domness of D and Cs. Assuming that D and Cs are 
two independent random variables (eq. (3)), the 
probability of assessment of a chloride concentration 
at a point x and a given time t, p(C(x, t)), writes 
(Nguyen, 2007): 
p C(x,t)( ) = p C(x,t) D,Cs( ) p D,Cs( )

D,Cs

∑  (2) 

with 
 p D,Cs( ) = p D( ) p Cs( )  (3) 

In eq. (2), the conditional probability p(C(x, t)| D, 
Cs) must already be known. This conditional proba-
bility relates the chloride content C(x, t) to the mate-
rial characteristics. In other words, it accounts for 
transfer mechanisms, such as the modeled by eq. (1), 
in a purely probabilistic form. This probability could 
be computed based on the conditional probability ta-
ble (CPT) of the BN. The CPT can be determined 
from:  

1. a given model –e.g., eq. (1) or  
2. expert knowledge.  
Once p(C(x, t)) is computed, a posteriori probabil-

ity distributions (distributions to be identified) can 
be calculated from a set of measurements of C(x, t). 
p(C(x, t)|o) represents the probability distribution of 

C(x, t) given evidence o. In this case, chloride pro-
files are used as evidence, assuming that measure-
ments are perfects. Thus, for identifying the proba-
bility distribution of the effective chloride diffusion 
coefficient, the application of the Bayes theorem 
gives: 
p D o( ) = p D C(x,t)( ) p C(x,t) o( )   (4) 

with 

 p D C(x,t)( ) =
p C(x,t) D( ) p D( )

p C(x,t)( )
 (5) 

Similarly for the identification of the distribution 
of the concentration of chlorides at the surface Cs: 
p Cs o( ) = p Cs C(x,t)( ) p C(x,t) o( )   (6) 

with 

 p Cs C(x,t)( ) =
p C(x,t) Cs( ) p Cs( )

p C(x,t)( )  (7) 

The determination of conditional probabilities is 
carried out herein by Bayesian learning and infer-
ence using the Netica® software. Note that the error 
of the model can be also updated by a BN as sug-
gested by (Deby et al., 2011).  

2.2 Duracrete model 

The closed-form solution of Fick's diffusion law can 
be easily used to predict the time to corrosion initia-
tion. However, eq. (1) is valid only when RC struc-
tures are saturated and subjected to constant concen-
tration of chlorides on the exposed surfaces. These 
conditions are rarely present for real structures be-
cause concrete is a heterogeneous material that is 
frequently exposed to time-variant surface chloride 
concentrations. Besides, this solution does not con-
sider chloride binding capacity, concrete aging and 
other environmental factors as temperature and hu-
midity (Saetta et al, 1993; Bastidas-Arteaga et al, 
2010, 2011). 

The European Union project (Duracrete, 2000) 
proposes an expression similar to eq. (1) which con-
siders the influence of material properties, environ-
ment, concrete aging and concrete curing on the 
chloride diffusion coefficient: 
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where Cs,D is the chloride surface content computed 
for this model, ke is a factor taking into account the 
characteristics of the environment (ke = 0.924 for a 
tidal zone and ke = 0.676 for an atmospheric zone), kt 
is a factor defined according to the method used to 
determine the diffusion coefficient Do, kc is a factor 

steel/concrete interface generates concrete cracking, 
which plays an important role in the steel corrosion 
rate when excessive concrete cracking is reached. 
Based on the previous considerations, the corrosion 
process is divided into two stages namely ‘corrosion 
initiation’ and ‘corrosion propagation’. The follow-
ing sections describe firstly the physical phenomena 
as well as present the adopted analytical models to 
determine the time to corrosion initiation caused by 
chloride ingress. Afterwards, it presents the Bayesi-
an formulation to identify the input random variables 
from real measurements. 

2.1 Simplified model for chloride diffusion 

The second law of diffusion of Fick is generally 
used to model chloride flow into concrete (Tuutti, 
1982). Assuming that concrete is homogeneous, iso-
tropic, saturated and subjected to a constant concen-
tration of chlorides at the surface Cs, the solution of 
differential equations is expressed as the concentra-
tion of chloride ions C(x, t) at depth x and time t, as 
follows: 
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where D is the effective chloride diffusion coeffi-
cient and erf (·) is the error function. The Bayes the-
orem can be used to calculate the probability distri-
butions of the random variables in this problem 
(Naïm et al., 2007). In this case, the main purpose of 
the Bayesian identification is to identify the ran-
domness of D and Cs. Assuming that D and Cs are 
two independent random variables (eq. (3)), the 
probability of assessment of a chloride concentration 
at a point x and a given time t, p(C(x, t)), writes 
(Nguyen, 2007): 
p C(x,t)( ) = p C(x,t) D,Cs( ) p D,Cs( )

D,Cs

∑  (2) 

with 
 p D,Cs( ) = p D( ) p Cs( )  (3) 

In eq. (2), the conditional probability p(C(x, t)| D, 
Cs) must already be known. This conditional proba-
bility relates the chloride content C(x, t) to the mate-
rial characteristics. In other words, it accounts for 
transfer mechanisms, such as the modeled by eq. (1), 
in a purely probabilistic form. This probability could 
be computed based on the conditional probability ta-
ble (CPT) of the BN. The CPT can be determined 
from:  

1. a given model –e.g., eq. (1) or  
2. expert knowledge.  
Once p(C(x, t)) is computed, a posteriori probabil-

ity distributions (distributions to be identified) can 
be calculated from a set of measurements of C(x, t). 
p(C(x, t)|o) represents the probability distribution of 

C(x, t) given evidence o. In this case, chloride pro-
files are used as evidence, assuming that measure-
ments are perfects. Thus, for identifying the proba-
bility distribution of the effective chloride diffusion 
coefficient, the application of the Bayes theorem 
gives: 
p D o( ) = p D C(x,t)( ) p C(x,t) o( )   (4) 

with 

 p D C(x,t)( ) =
p C(x,t) D( ) p D( )

p C(x,t)( )
 (5) 

Similarly for the identification of the distribution 
of the concentration of chlorides at the surface Cs: 
p Cs o( ) = p Cs C(x,t)( ) p C(x,t) o( )   (6) 

with 

 p Cs C(x,t)( ) =
p C(x,t) Cs( ) p Cs( )

p C(x,t)( )  (7) 

The determination of conditional probabilities is 
carried out herein by Bayesian learning and infer-
ence using the Netica® software. Note that the error 
of the model can be also updated by a BN as sug-
gested by (Deby et al., 2011).  

2.2 Duracrete model 

The closed-form solution of Fick's diffusion law can 
be easily used to predict the time to corrosion initia-
tion. However, eq. (1) is valid only when RC struc-
tures are saturated and subjected to constant concen-
tration of chlorides on the exposed surfaces. These 
conditions are rarely present for real structures be-
cause concrete is a heterogeneous material that is 
frequently exposed to time-variant surface chloride 
concentrations. Besides, this solution does not con-
sider chloride binding capacity, concrete aging and 
other environmental factors as temperature and hu-
midity (Saetta et al, 1993; Bastidas-Arteaga et al, 
2010, 2011). 

The European Union project (Duracrete, 2000) 
proposes an expression similar to eq. (1) which con-
siders the influence of material properties, environ-
ment, concrete aging and concrete curing on the 
chloride diffusion coefficient: 
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where Cs,D is the chloride surface content computed 
for this model, ke is a factor taking into account the 
characteristics of the environment (ke = 0.924 for a 
tidal zone and ke = 0.676 for an atmospheric zone), kt 
is a factor defined according to the method used to 
determine the diffusion coefficient Do, kc is a factor 
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steel/concrete interface generates concrete cracking, 
which plays an important role in the steel corrosion 
rate when excessive concrete cracking is reached. 
Based on the previous considerations, the corrosion 
process is divided into two stages namely ‘corrosion 
initiation’ and ‘corrosion propagation’. The follow-
ing sections describe firstly the physical phenomena 
as well as present the adopted analytical models to 
determine the time to corrosion initiation caused by 
chloride ingress. Afterwards, it presents the Bayesi-
an formulation to identify the input random variables 
from real measurements. 

2.1 Simplified model for chloride diffusion 

The second law of diffusion of Fick is generally 
used to model chloride flow into concrete (Tuutti, 
1982). Assuming that concrete is homogeneous, iso-
tropic, saturated and subjected to a constant concen-
tration of chlorides at the surface Cs, the solution of 
differential equations is expressed as the concentra-
tion of chloride ions C(x, t) at depth x and time t, as 
follows: 
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where D is the effective chloride diffusion coeffi-
cient and erf (·) is the error function. The Bayes the-
orem can be used to calculate the probability distri-
butions of the random variables in this problem 
(Naïm et al., 2007). In this case, the main purpose of 
the Bayesian identification is to identify the ran-
domness of D and Cs. Assuming that D and Cs are 
two independent random variables (eq. (3)), the 
probability of assessment of a chloride concentration 
at a point x and a given time t, p(C(x, t)), writes 
(Nguyen, 2007): 
p C(x,t)( ) = p C(x,t) D,Cs( ) p D,Cs( )

D,Cs

∑  (2) 

with 
 p D,Cs( ) = p D( ) p Cs( )  (3) 

In eq. (2), the conditional probability p(C(x, t)| D, 
Cs) must already be known. This conditional proba-
bility relates the chloride content C(x, t) to the mate-
rial characteristics. In other words, it accounts for 
transfer mechanisms, such as the modeled by eq. (1), 
in a purely probabilistic form. This probability could 
be computed based on the conditional probability ta-
ble (CPT) of the BN. The CPT can be determined 
from:  

1. a given model –e.g., eq. (1) or  
2. expert knowledge.  
Once p(C(x, t)) is computed, a posteriori probabil-

ity distributions (distributions to be identified) can 
be calculated from a set of measurements of C(x, t). 
p(C(x, t)|o) represents the probability distribution of 

C(x, t) given evidence o. In this case, chloride pro-
files are used as evidence, assuming that measure-
ments are perfects. Thus, for identifying the proba-
bility distribution of the effective chloride diffusion 
coefficient, the application of the Bayes theorem 
gives: 
p D o( ) = p D C(x,t)( ) p C(x,t) o( )   (4) 

with 

 p D C(x,t)( ) =
p C(x,t) D( ) p D( )

p C(x,t)( )
 (5) 

Similarly for the identification of the distribution 
of the concentration of chlorides at the surface Cs: 
p Cs o( ) = p Cs C(x,t)( ) p C(x,t) o( )   (6) 

with 

 p Cs C(x,t)( ) =
p C(x,t) Cs( ) p Cs( )

p C(x,t)( )  (7) 

The determination of conditional probabilities is 
carried out herein by Bayesian learning and infer-
ence using the Netica® software. Note that the error 
of the model can be also updated by a BN as sug-
gested by (Deby et al., 2011).  

2.2 Duracrete model 

The closed-form solution of Fick's diffusion law can 
be easily used to predict the time to corrosion initia-
tion. However, eq. (1) is valid only when RC struc-
tures are saturated and subjected to constant concen-
tration of chlorides on the exposed surfaces. These 
conditions are rarely present for real structures be-
cause concrete is a heterogeneous material that is 
frequently exposed to time-variant surface chloride 
concentrations. Besides, this solution does not con-
sider chloride binding capacity, concrete aging and 
other environmental factors as temperature and hu-
midity (Saetta et al, 1993; Bastidas-Arteaga et al, 
2010, 2011). 

The European Union project (Duracrete, 2000) 
proposes an expression similar to eq. (1) which con-
siders the influence of material properties, environ-
ment, concrete aging and concrete curing on the 
chloride diffusion coefficient: 
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where Cs,D is the chloride surface content computed 
for this model, ke is a factor taking into account the 
characteristics of the environment (ke = 0.924 for a 
tidal zone and ke = 0.676 for an atmospheric zone), kt 
is a factor defined according to the method used to 
determine the diffusion coefficient Do, kc is a factor 
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•  Actualisa%on	
  →	
  mesures	
  expérimentales	
  

•  Performance	
  et	
  configura%on	
  du	
  RB	
  →	
  échan%llons	
  numériques	
  

•  Distribu%ons	
  pour	
  générer	
  les	
  échan%llons	
  numériques	
  à	
  par%r	
  de	
  simula%ons	
  
(hyp	
  :	
  v.a.	
  gaussiennes)	
  :	
  

•  Echan%llons	
  numériques	
  à	
  t	
  =	
  10	
  ans	
  et	
  trois	
  profondeurs	
  :	
  

μCs	
  (kg/m3)	
   σCs	
  (kg/m3)	
   μD	
  (m2/s)	
   σD	
  (m2/s)	
  

5	
   1	
   3,00×10-­‐12	
   3,00×10-­‐13	
  

	
  C(x,	
  t	
  =	
  10	
  ans)	
  (kg/m3)	
  
	
  

x	
  =	
  1cm	
  
	
  

x	
  =	
  4cm	
  
	
  

x	
  =	
  8cm	
  
	
  

	
  0.0	
  -­‐	
  0.6	
   0	
   0.00033	
   0.992333	
  
	
  0.6	
  -­‐	
  1.2	
   0.0003	
   0.05467	
   0.007667	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  ⋮	
  	
   	
  	
  	
  	
  	
  	
  	
  ⋮	
  	
   	
  	
  	
  	
  	
  	
  ⋮	
  	
   	
  	
  	
  	
  	
  ⋮	
  	
  

	
  8.4	
  -­‐	
  9.0	
   0	
   0	
   0	
  
Total	
   1	
   1	
   1	
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Structure	
  du	
  réseaux	
  bayésien	
  

•  Parents	
  →	
  Cs	
  et	
  D	
  	
  	
  
•  Enfants	
  →	
  

•  Deux	
  échéances	
  
•  Trois	
  profondeurs	
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Iden%fica%on	
  par	
  des	
  actualisa%ons	
  successives	
  [Nguyen,	
  2007]	
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Résultats	
  :	
  	
  

Par	
  rapport	
  aux	
  résultats	
  théoriques	
  :	
  	
  
•  Erreur	
  inférieure	
  à	
  3%	
  →	
  calcul	
  des	
  moyennes	
  et	
  de	
  l’écart-­‐type	
  de	
  Cs.	
  	
  
•  Améliorer	
  l’iden%fica%on	
  de	
  l’écart-­‐type	
  de	
  D	
  →	
  	
  plus	
  d’itéra%ons	
  ou	
  

simula%ons	
  dans	
  le	
  calcul	
  des	
  TPC	
  



/17	
  

Iden%fica%on	
  à	
  par%r	
  de	
  mesures	
  
11	
  

Descrip%on	
  du	
  problème	
  :	
  
	
  
•  Construit	
  en	
  1980	
  et	
  placé	
  dans	
  un	
  

environnement	
  marin.	
  
•  Inspec%on	
  2007	
  →	
  profiles	
  de	
  chlorures	
  sur	
  

poutres	
  placés	
  dans	
  une	
  zone	
  atmosphérique.	
  
	
  
Objec%f	
  :	
  
Iden%fier	
  →	
  modèle	
  [Duracrete,	
  2000]	
  

Défini%on	
  des	
  v.a.	
  à	
  iden%fier	
  :	
  
	
  
	
  

Pont	
  Ferrycarrig	
  (Irlande)	
  	
  

steel/concrete interface generates concrete cracking, 
which plays an important role in the steel corrosion 
rate when excessive concrete cracking is reached. 
Based on the previous considerations, the corrosion 
process is divided into two stages namely ‘corrosion 
initiation’ and ‘corrosion propagation’. The follow-
ing sections describe firstly the physical phenomena 
as well as present the adopted analytical models to 
determine the time to corrosion initiation caused by 
chloride ingress. Afterwards, it presents the Bayesi-
an formulation to identify the input random variables 
from real measurements. 

2.1 Simplified model for chloride diffusion 

The second law of diffusion of Fick is generally 
used to model chloride flow into concrete (Tuutti, 
1982). Assuming that concrete is homogeneous, iso-
tropic, saturated and subjected to a constant concen-
tration of chlorides at the surface Cs, the solution of 
differential equations is expressed as the concentra-
tion of chloride ions C(x, t) at depth x and time t, as 
follows: 
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where D is the effective chloride diffusion coeffi-
cient and erf (·) is the error function. The Bayes the-
orem can be used to calculate the probability distri-
butions of the random variables in this problem 
(Naïm et al., 2007). In this case, the main purpose of 
the Bayesian identification is to identify the ran-
domness of D and Cs. Assuming that D and Cs are 
two independent random variables (eq. (3)), the 
probability of assessment of a chloride concentration 
at a point x and a given time t, p(C(x, t)), writes 
(Nguyen, 2007): 
p C(x,t)( ) = p C(x,t) D,Cs( ) p D,Cs( )

D,Cs

∑  (2) 

with 
 p D,Cs( ) = p D( ) p Cs( )  (3) 

In eq. (2), the conditional probability p(C(x, t)| D, 
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rial characteristics. In other words, it accounts for 
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The determination of conditional probabilities is 
carried out herein by Bayesian learning and infer-
ence using the Netica® software. Note that the error 
of the model can be also updated by a BN as sug-
gested by (Deby et al., 2011).  

2.2 Duracrete model 

The closed-form solution of Fick's diffusion law can 
be easily used to predict the time to corrosion initia-
tion. However, eq. (1) is valid only when RC struc-
tures are saturated and subjected to constant concen-
tration of chlorides on the exposed surfaces. These 
conditions are rarely present for real structures be-
cause concrete is a heterogeneous material that is 
frequently exposed to time-variant surface chloride 
concentrations. Besides, this solution does not con-
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where Cs,D is the chloride surface content computed 
for this model, ke is a factor taking into account the 
characteristics of the environment (ke = 0.924 for a 
tidal zone and ke = 0.676 for an atmospheric zone), kt 
is a factor defined according to the method used to 
determine the diffusion coefficient Do, kc is a factor 

•  ke	
  =	
  0.676	
  (zone	
  atmosphérique)	
  
•  kt	
  =	
  1	
  (Do	
  →	
  test	
  de	
  migra%on)	
  
•  kc	
  =	
  0.8	
  (temps	
  de	
  cure	
  de	
  28	
  jours)	
  
•  t0	
  =	
  28	
  jours	
  (temps	
  →	
  mesure	
  de	
  Do)	
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same iterative procedure described in section 3.2, we 
carried out five iterations to illustrate the identifica-
tion process. Table 5 shows the a posteriori mean 
and standard deviation of Cs,D, Do and nD. It is ob-
served that after five iterations, the mean and stand-
ard deviation gradually lead to constant values. The-
se results are fairly stable after five iterations. 
However, the results will be more accurate if the 
number of iterations increases. 

 
Table 5. A posteriori results for Cs,D, Do and nD.  
Variable Iteration Mean Std. dev 

Cs,D 
(% per wt. of 
 concrete) 

0 0.0809 0.01 
1 0.0803 0.0078 
2 0.0799 0.0069 
3 0.08 0.0065 
4 0.0801 0.0064 
5 0.0802 0.0064 

Do  
(×10-10 m2/s) 

0 4.91 2.8 
1 5.66 2.5 
2 6.38 2 
3 6.75 1.7 
4 6.81 1.5 
5 6.75 1.3 

nD 

0 0.804 0.14 
1 0.844 0.11 
2 0.879 0.075 
3 0.894 0.053 
4 0.898 0.044 
5 0.9 0.038 

 
Afterwards, this work focuses on determining 

which type of distribution is most appropriate to rep-
resent the random variables of Cs,D, Do and nD. To 
find the best kind of distribution, we compute the 
"log likelihood" value for some distribution types af-
ter 5 iterations. This estimation is performed using 
the distribution fitting tool in Matlab®. These results 
are presented in Table 6. The selection of the pdf 
type will rely both on the physical understanding of 
the variations of each random variable (range, shape, 
etc.) and this estimate. 
 

For Cs,D, the log likelihood is larger for a lognor-
mal distribution according to the results presented in 
Table 6. Consequently, this random variable will be 
represented by a lognormal distribution with a mean 
of 0.0802 % per wt. of concrete and a standard devi-
ation of 0.0064 % per wt. of concrete. It is expected 
that Cs,D follows a lognormal distribution because 
this variable cannot physically take negative values. 
This kind of distribution is also widely found in the 
literature –e.g., Duracrete (2000), Vu and Stewart 
(2000), Duprat (2007). 

For Do, the largest log likelihood value corre-
sponds to a beta distribution. However, there is no 
significant difference with the log likelihood values 
obtained for the gamma and lognormal distributions. 

The beta distribution could not be appropriate to rep-
resent this random variable because it is defined into 
the range [0, 1]. Therefore, Do could be represented 
by gamma or lognormal distributions with the fol-
lowing parameters: mean = 6.75×10-10 m2/s, stand-
ard deviation =1.3×10-10 m2/s, shape = 27.2 and 
scale = 2.48×10-11. These types of distributions have 
been also reported for other authors in the literature. 
Kirkpatrick et al. (2002) found that this variable fol-
lows a gamma distribution. Wallbank (1989), Hoff-
man et al. (1994) and Enright and Frangopol (1998) 
conclude that this random variable follows a 
lognormal distribution. The identified mean value of 
Do could seem higher with respect to different values 
reported in the literature. The difference is explained 
by the fact that this diffusion coefficient is computed 
from results of total chloride concentration.  

 
Table 6. Log likelihood test for the identified random variables. 

Variable Distribution Log likelihood 

Cs,D 
(/wt. of 
 concrete) 

Normal 834.63 
Lognormal 836.47 
Weibull 825.00 
Gamma 835.91 
Beta 835.91 

Do  
(m2/s) 

Normal 2092.18 
Lognormal 2093.37 
Weibull 2089.73 
Gamma 2093.43 
Beta 2093.44 

nD 

Normal 195.47 
Lognormal 195.42 
Weibull 189.60 
Gamma 195.46 
Beta 190.70 

 
For nD, the maximum log likelihood value corre-

sponds to a normal distribution. Nevertheless, this 
kind of distribution is not appropriate to represent 
this random variable because it could take values 
outside of the range [0, 1] that are not allowed by the 
Duracrete model. Thus, it is assumed that the aging 
factor follows a beta distribution that takes only val-
ues between 0 and 1. Duracrete (2000) also suggest 
this kind of distribution. The parameters for nD are: 
mean = 0.9 and the shape parameters a = 56.39 and 
b = 6.18.  

5 CONCLUSIONS 

Chloride ions have been recognized as a critical 
agent leading to reinforcement corrosion of RC 
structures. Therefore, the prediction of chloride pen-
etration into concrete is necessary for optimal man-
agement of RC structures placed in chloride-
contaminated environments. Prediction results de-
pend on both the quality of chloride ingress models 
and their input data. This work focused on the as-
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same iterative procedure described in section 3.2, we 
carried out five iterations to illustrate the identifica-
tion process. Table 5 shows the a posteriori mean 
and standard deviation of Cs,D, Do and nD. It is ob-
served that after five iterations, the mean and stand-
ard deviation gradually lead to constant values. The-
se results are fairly stable after five iterations. 
However, the results will be more accurate if the 
number of iterations increases. 

 
Table 5. A posteriori results for Cs,D, Do and nD.  
Variable Iteration Mean Std. dev 

Cs,D 
(% per wt. of 
 concrete) 

0 0.0809 0.01 
1 0.0803 0.0078 
2 0.0799 0.0069 
3 0.08 0.0065 
4 0.0801 0.0064 
5 0.0802 0.0064 

Do  
(×10-10 m2/s) 

0 4.91 2.8 
1 5.66 2.5 
2 6.38 2 
3 6.75 1.7 
4 6.81 1.5 
5 6.75 1.3 

nD 

0 0.804 0.14 
1 0.844 0.11 
2 0.879 0.075 
3 0.894 0.053 
4 0.898 0.044 
5 0.9 0.038 

 
Afterwards, this work focuses on determining 

which type of distribution is most appropriate to rep-
resent the random variables of Cs,D, Do and nD. To 
find the best kind of distribution, we compute the 
"log likelihood" value for some distribution types af-
ter 5 iterations. This estimation is performed using 
the distribution fitting tool in Matlab®. These results 
are presented in Table 6. The selection of the pdf 
type will rely both on the physical understanding of 
the variations of each random variable (range, shape, 
etc.) and this estimate. 
 

For Cs,D, the log likelihood is larger for a lognor-
mal distribution according to the results presented in 
Table 6. Consequently, this random variable will be 
represented by a lognormal distribution with a mean 
of 0.0802 % per wt. of concrete and a standard devi-
ation of 0.0064 % per wt. of concrete. It is expected 
that Cs,D follows a lognormal distribution because 
this variable cannot physically take negative values. 
This kind of distribution is also widely found in the 
literature –e.g., Duracrete (2000), Vu and Stewart 
(2000), Duprat (2007). 

For Do, the largest log likelihood value corre-
sponds to a beta distribution. However, there is no 
significant difference with the log likelihood values 
obtained for the gamma and lognormal distributions. 

The beta distribution could not be appropriate to rep-
resent this random variable because it is defined into 
the range [0, 1]. Therefore, Do could be represented 
by gamma or lognormal distributions with the fol-
lowing parameters: mean = 6.75×10-10 m2/s, stand-
ard deviation =1.3×10-10 m2/s, shape = 27.2 and 
scale = 2.48×10-11. These types of distributions have 
been also reported for other authors in the literature. 
Kirkpatrick et al. (2002) found that this variable fol-
lows a gamma distribution. Wallbank (1989), Hoff-
man et al. (1994) and Enright and Frangopol (1998) 
conclude that this random variable follows a 
lognormal distribution. The identified mean value of 
Do could seem higher with respect to different values 
reported in the literature. The difference is explained 
by the fact that this diffusion coefficient is computed 
from results of total chloride concentration.  

 
Table 6. Log likelihood test for the identified random variables. 

Variable Distribution Log likelihood 

Cs,D 
(/wt. of 
 concrete) 

Normal 834.63 
Lognormal 836.47 
Weibull 825.00 
Gamma 835.91 
Beta 835.91 

Do  
(m2/s) 

Normal 2092.18 
Lognormal 2093.37 
Weibull 2089.73 
Gamma 2093.43 
Beta 2093.44 

nD 

Normal 195.47 
Lognormal 195.42 
Weibull 189.60 
Gamma 195.46 
Beta 190.70 

 
For nD, the maximum log likelihood value corre-

sponds to a normal distribution. Nevertheless, this 
kind of distribution is not appropriate to represent 
this random variable because it could take values 
outside of the range [0, 1] that are not allowed by the 
Duracrete model. Thus, it is assumed that the aging 
factor follows a beta distribution that takes only val-
ues between 0 and 1. Duracrete (2000) also suggest 
this kind of distribution. The parameters for nD are: 
mean = 0.9 and the shape parameters a = 56.39 and 
b = 6.18.  

5 CONCLUSIONS 

Chloride ions have been recognized as a critical 
agent leading to reinforcement corrosion of RC 
structures. Therefore, the prediction of chloride pen-
etration into concrete is necessary for optimal man-
agement of RC structures placed in chloride-
contaminated environments. Prediction results de-
pend on both the quality of chloride ingress models 
and their input data. This work focused on the as-
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same iterative procedure described in section 3.2, we 
carried out five iterations to illustrate the identifica-
tion process. Table 5 shows the a posteriori mean 
and standard deviation of Cs,D, Do and nD. It is ob-
served that after five iterations, the mean and stand-
ard deviation gradually lead to constant values. The-
se results are fairly stable after five iterations. 
However, the results will be more accurate if the 
number of iterations increases. 

 
Table 5. A posteriori results for Cs,D, Do and nD.  
Variable Iteration Mean Std. dev 

Cs,D 
(% per wt. of 
 concrete) 

0 0.0809 0.01 
1 0.0803 0.0078 
2 0.0799 0.0069 
3 0.08 0.0065 
4 0.0801 0.0064 
5 0.0802 0.0064 

Do  
(×10-10 m2/s) 

0 4.91 2.8 
1 5.66 2.5 
2 6.38 2 
3 6.75 1.7 
4 6.81 1.5 
5 6.75 1.3 

nD 

0 0.804 0.14 
1 0.844 0.11 
2 0.879 0.075 
3 0.894 0.053 
4 0.898 0.044 
5 0.9 0.038 

 
Afterwards, this work focuses on determining 

which type of distribution is most appropriate to rep-
resent the random variables of Cs,D, Do and nD. To 
find the best kind of distribution, we compute the 
"log likelihood" value for some distribution types af-
ter 5 iterations. This estimation is performed using 
the distribution fitting tool in Matlab®. These results 
are presented in Table 6. The selection of the pdf 
type will rely both on the physical understanding of 
the variations of each random variable (range, shape, 
etc.) and this estimate. 
 

For Cs,D, the log likelihood is larger for a lognor-
mal distribution according to the results presented in 
Table 6. Consequently, this random variable will be 
represented by a lognormal distribution with a mean 
of 0.0802 % per wt. of concrete and a standard devi-
ation of 0.0064 % per wt. of concrete. It is expected 
that Cs,D follows a lognormal distribution because 
this variable cannot physically take negative values. 
This kind of distribution is also widely found in the 
literature –e.g., Duracrete (2000), Vu and Stewart 
(2000), Duprat (2007). 

For Do, the largest log likelihood value corre-
sponds to a beta distribution. However, there is no 
significant difference with the log likelihood values 
obtained for the gamma and lognormal distributions. 

The beta distribution could not be appropriate to rep-
resent this random variable because it is defined into 
the range [0, 1]. Therefore, Do could be represented 
by gamma or lognormal distributions with the fol-
lowing parameters: mean = 6.75×10-10 m2/s, stand-
ard deviation =1.3×10-10 m2/s, shape = 27.2 and 
scale = 2.48×10-11. These types of distributions have 
been also reported for other authors in the literature. 
Kirkpatrick et al. (2002) found that this variable fol-
lows a gamma distribution. Wallbank (1989), Hoff-
man et al. (1994) and Enright and Frangopol (1998) 
conclude that this random variable follows a 
lognormal distribution. The identified mean value of 
Do could seem higher with respect to different values 
reported in the literature. The difference is explained 
by the fact that this diffusion coefficient is computed 
from results of total chloride concentration.  

 
Table 6. Log likelihood test for the identified random variables. 

Variable Distribution Log likelihood 

Cs,D 
(/wt. of 
 concrete) 

Normal 834.63 
Lognormal 836.47 
Weibull 825.00 
Gamma 835.91 
Beta 835.91 

Do  
(m2/s) 

Normal 2092.18 
Lognormal 2093.37 
Weibull 2089.73 
Gamma 2093.43 
Beta 2093.44 

nD 

Normal 195.47 
Lognormal 195.42 
Weibull 189.60 
Gamma 195.46 
Beta 190.70 

 
For nD, the maximum log likelihood value corre-

sponds to a normal distribution. Nevertheless, this 
kind of distribution is not appropriate to represent 
this random variable because it could take values 
outside of the range [0, 1] that are not allowed by the 
Duracrete model. Thus, it is assumed that the aging 
factor follows a beta distribution that takes only val-
ues between 0 and 1. Duracrete (2000) also suggest 
this kind of distribution. The parameters for nD are: 
mean = 0.9 and the shape parameters a = 56.39 and 
b = 6.18.  

5 CONCLUSIONS 

Chloride ions have been recognized as a critical 
agent leading to reinforcement corrosion of RC 
structures. Therefore, the prediction of chloride pen-
etration into concrete is necessary for optimal man-
agement of RC structures placed in chloride-
contaminated environments. Prediction results de-
pend on both the quality of chloride ingress models 
and their input data. This work focused on the as-
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same iterative procedure described in section 3.2, we 
carried out five iterations to illustrate the identifica-
tion process. Table 5 shows the a posteriori mean 
and standard deviation of Cs,D, Do and nD. It is ob-
served that after five iterations, the mean and stand-
ard deviation gradually lead to constant values. The-
se results are fairly stable after five iterations. 
However, the results will be more accurate if the 
number of iterations increases. 
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Variable Iteration Mean Std. dev 

Cs,D 
(% per wt. of 
 concrete) 

0 0.0809 0.01 
1 0.0803 0.0078 
2 0.0799 0.0069 
3 0.08 0.0065 
4 0.0801 0.0064 
5 0.0802 0.0064 

Do  
(×10-10 m2/s) 

0 4.91 2.8 
1 5.66 2.5 
2 6.38 2 
3 6.75 1.7 
4 6.81 1.5 
5 6.75 1.3 

nD 

0 0.804 0.14 
1 0.844 0.11 
2 0.879 0.075 
3 0.894 0.053 
4 0.898 0.044 
5 0.9 0.038 

 
Afterwards, this work focuses on determining 

which type of distribution is most appropriate to rep-
resent the random variables of Cs,D, Do and nD. To 
find the best kind of distribution, we compute the 
"log likelihood" value for some distribution types af-
ter 5 iterations. This estimation is performed using 
the distribution fitting tool in Matlab®. These results 
are presented in Table 6. The selection of the pdf 
type will rely both on the physical understanding of 
the variations of each random variable (range, shape, 
etc.) and this estimate. 
 

For Cs,D, the log likelihood is larger for a lognor-
mal distribution according to the results presented in 
Table 6. Consequently, this random variable will be 
represented by a lognormal distribution with a mean 
of 0.0802 % per wt. of concrete and a standard devi-
ation of 0.0064 % per wt. of concrete. It is expected 
that Cs,D follows a lognormal distribution because 
this variable cannot physically take negative values. 
This kind of distribution is also widely found in the 
literature –e.g., Duracrete (2000), Vu and Stewart 
(2000), Duprat (2007). 

For Do, the largest log likelihood value corre-
sponds to a beta distribution. However, there is no 
significant difference with the log likelihood values 
obtained for the gamma and lognormal distributions. 

The beta distribution could not be appropriate to rep-
resent this random variable because it is defined into 
the range [0, 1]. Therefore, Do could be represented 
by gamma or lognormal distributions with the fol-
lowing parameters: mean = 6.75×10-10 m2/s, stand-
ard deviation =1.3×10-10 m2/s, shape = 27.2 and 
scale = 2.48×10-11. These types of distributions have 
been also reported for other authors in the literature. 
Kirkpatrick et al. (2002) found that this variable fol-
lows a gamma distribution. Wallbank (1989), Hoff-
man et al. (1994) and Enright and Frangopol (1998) 
conclude that this random variable follows a 
lognormal distribution. The identified mean value of 
Do could seem higher with respect to different values 
reported in the literature. The difference is explained 
by the fact that this diffusion coefficient is computed 
from results of total chloride concentration.  

 
Table 6. Log likelihood test for the identified random variables. 

Variable Distribution Log likelihood 

Cs,D 
(/wt. of 
 concrete) 

Normal 834.63 
Lognormal 836.47 
Weibull 825.00 
Gamma 835.91 
Beta 835.91 
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Normal 2092.18 
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Weibull 2089.73 
Gamma 2093.43 
Beta 2093.44 

nD 

Normal 195.47 
Lognormal 195.42 
Weibull 189.60 
Gamma 195.46 
Beta 190.70 

 
For nD, the maximum log likelihood value corre-

sponds to a normal distribution. Nevertheless, this 
kind of distribution is not appropriate to represent 
this random variable because it could take values 
outside of the range [0, 1] that are not allowed by the 
Duracrete model. Thus, it is assumed that the aging 
factor follows a beta distribution that takes only val-
ues between 0 and 1. Duracrete (2000) also suggest 
this kind of distribution. The parameters for nD are: 
mean = 0.9 and the shape parameters a = 56.39 and 
b = 6.18.  

5 CONCLUSIONS 

Chloride ions have been recognized as a critical 
agent leading to reinforcement corrosion of RC 
structures. Therefore, the prediction of chloride pen-
etration into concrete is necessary for optimal man-
agement of RC structures placed in chloride-
contaminated environments. Prediction results de-
pend on both the quality of chloride ingress models 
and their input data. This work focused on the as-
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lognormal distribution. The identified mean value of 
Do could seem higher with respect to different values 
reported in the literature. The difference is explained 
by the fact that this diffusion coefficient is computed 
from results of total chloride concentration.  

 
Table 6. Log likelihood test for the identified random variables. 
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For nD, the maximum log likelihood value corre-

sponds to a normal distribution. Nevertheless, this 
kind of distribution is not appropriate to represent 
this random variable because it could take values 
outside of the range [0, 1] that are not allowed by the 
Duracrete model. Thus, it is assumed that the aging 
factor follows a beta distribution that takes only val-
ues between 0 and 1. Duracrete (2000) also suggest 
this kind of distribution. The parameters for nD are: 
mean = 0.9 and the shape parameters a = 56.39 and 
b = 6.18.  

5 CONCLUSIONS 

Chloride ions have been recognized as a critical 
agent leading to reinforcement corrosion of RC 
structures. Therefore, the prediction of chloride pen-
etration into concrete is necessary for optimal man-
agement of RC structures placed in chloride-
contaminated environments. Prediction results de-
pend on both the quality of chloride ingress models 
and their input data. This work focused on the as-
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•  nD→	
  défini	
  dans	
  l’intervalle	
  [0,	
  1]	
  
•  Beta	
  →	
  μ	
  =	
  0.9	
  	
  σ	
  =	
  0.038	
  (paramètres	
  a	
  =56.39	
  et	
  b	
  =	
  6.18)	
  
•  Libérature	
  →	
  [Duracrete,	
  2000]	
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•  Iden%fica%on	
  des	
  variables	
  d’entrée	
  des	
  modèles	
  probabilistes	
  de	
  pénétra%on	
  de	
  
chlorures	
  →	
  données	
  réelles	
  (Approche	
  bayésien).	
  

	
  
•  Réseau	
  bayésien	
  →	
  évidence	
  numérique	
  	
  	
  	
  

•  Actualisa%ons	
  successives	
  →	
  améliorer	
  l’iden%fica%on	
  de	
  μ	
  et	
  σ	
  	
  

•  Iden%fica%on	
  →	
  pont	
  Ferrycarrig	
  (Irlande)	
  
•  3	
  variables	
  aléatoires	
  →	
  Cs,D,	
  Do	
  et	
  nD	
  

Perspec%ves	
  	
  
•  Iden%fica%on	
  de	
  v.a.	
  d’un	
  modèle	
  plus	
  représenta%f	
  [Bas%das-­‐Arteaga	
  et	
  al.,	
  2011]	
  

•  Considéra%on	
  de	
  la	
  corréla%on	
  entre	
  les	
  v.a.	
  et	
  de	
  l’erreur	
  du	
  modèle	
  

•  U%lisa%on	
  de	
  réseaux	
  bayésiens	
  dynamiques	
  [Bensi	
  et	
  al,	
  2011]	
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  aben%on	
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