\mathcal{M}

Fiabilité des matériaux et des structures 2012 4-5-6 juin 2012 - Chambéry

Identification bayésienne des variables aléatoires pour la modélisation de la pénétration des chlorures dans les structures en béton armé

E. BASTIDAS-ARTEAGA, F. SCHOEFS et S. BONNET

LUNAM Université, Université de Nantes-Ecole Centrale Nantes, GeM, Institut de Recherche en Génie Civil et Mécanique, CNRS UMR 6183

emilio.bastidas@univ-nantes.fr

Problématique

- Corrosion → réduction de la capacité portante des structures :
 - perte de la section transversale des aciers;
 - perte d'adhérence entre le béton et les aciers et
 - fissuration et éclatement du béton.
- Dégâts importants après 20 ou 30 ans [Kumar Mehta, 1997] → inspection et réparation.

Modélisation de la pénétration des chlorures → cruciale pour optimiser les opérations de maintenance sur ces ouvrages.

Besoins de la modélisation :

- Modèles de dégradation pertinents [Saetta et al., 1993], [Samson & Marchand, 2007], [Bastidas-Arteaga et al., 2011]
- Données d'entrée représentatives du problème traité (aléa lié aux propriétés du matériau, paramètres du modèle, climat, ...)

FUI 2008-2010

Réparation des structures en béton en zone de marnage

Modélisation Expérimentation

Cadre probabiliste

Identification de l'aléa →

- propriétés du matériau/paramètres du modèle
- modèle (erreur du modèle)
- actions environnementales (T, HR, ...)

Plan de l'exposé

- Introduction
- Application du théorème de Bayes aux modèles de diffusion
- Identification à partir d'échantillons numériques
- Identification à partir de mesures
- Conclusions et perspectives

Application du théorème de Bayes aux modèles de diffusion

Modèles de diffusion adoptés :

Mise à point de la méthode [Tuutti, 1982]

$$C(x,t) = C_s \left[1 - erf\left(\frac{x}{2\sqrt{Dt}}\right) \right]$$

avec:

- C_s: concentration de chlorures à la surface
- *D* : coefficient de diffusion effective des ions chlorures

Identification à partir de mesures réelles [Duracrete, 2000]

$$C(x,t) = C_{s,D} \left[1 - erf \left(\frac{x}{2\sqrt{k_e k_t k_o D_o(t_o/t)^{n_D} t}} \right) \right]$$

avec:

- $C_{s,D}$: concentration de chlorures à la surface
- D_o: coefficient de diffusion effective des ions chlorures
- n_D : vieillissement
- k_e : type d'environnement
- k_t: méthode de détermination de D_o
- k_c : temps de cure
- t_o : temps \rightarrow mesure de D_o

Application du théorème de Bayes aux modèles de diffusion

Exemple pour le modèle simplifié [Tuutti, 1982]

Si les v.a. D et C_s sont indépendantes, $p(D,C_s) = p(D)p(C_s)$, et la probabilité p(C(x,t)) devient :

$$p(C(x,t)) = \sum_{D,C_s} p(C(x,t)|D,C_s) p(D,C_s)$$

La détermination des probabilités conditionnelles s'effectue par apprentissage et inférence avec le logiciel Netica®

Les distributions de probabilité à identifier s'obtiennent lorsque l'on introduit les observations, o, dans le problème :

$$p(D|o) = p(D|C(x,t))p(C(x,t)|o) \text{ avec } p(D|C(x,t)) = \frac{p(C(x,t)|D)p(D)}{p(C(x,t))}$$

$$p(C_s|o) = p(C_s|C(x,t))p(C(x,t)|o) \quad \text{avec} \quad p(C_s|C(x,t)) = \frac{p(C(x,t)|C_s)p(C_s)}{p(C(x,t))}$$

- Actualisation → mesures expérimentales
- Performance et configuration du RB → échantillons numériques
- Distributions pour générer les échantillons numériques à partir de simulations (hyp : v.a. gaussiennes) :

μ_{Cs} (kg/m ³)	σ_{Cs} (kg/m ³)	μ_D (m ² /s)	σ_D (m ² /s)
5	1	3,00×10 ⁻¹²	3,00×10 ⁻¹³

• Echantillons numériques à t = 10 ans et trois profondeurs :

$C(x, t = 10 \text{ ans}) (kg/m^3)$	x = 1cm	<i>x</i> = 4cm	<i>x</i> = 8cm
0.0 - 0.6	0	0.00033	0.992333
0.6 - 1.2	0.0003	0.05467	0.007667
:	÷	:	:
8.4 - 9.0	0	0	0
Total	1	1	1

Structure du réseaux bayésien

- Parents $\rightarrow C_s$ et D
- Enfants →
 - Deux échéances
 - Trois profondeurs

Identification par des actualisations successives [Nguyen, 2007]

Résultats:

Par rapport aux résultats théoriques :

- Erreur inférieure à 3% \rightarrow calcul des moyennes et de l'écart-type de C_s .
- Améliorer l'identification de l'écart-type de D → plus d'itérations ou simulations dans le calcul des TPC

Description du problème :

- Construit en 1980 et placé dans un environnement marin.
- Inspection 2007 → profiles de chlorures sur poutres placés dans une zone atmosphérique.

Objectif:

Identifier → modèle [Duracrete, 2000]

Pont Ferrycarrig (Irlande)

Définition des v.a. à identifier :

$$C(x,t) = C_{s,D} \left[1 - erf \left(\frac{x}{2\sqrt{k_e k_t k_t D_o(t_o/t)^{n_D} t}} \right) \right] \begin{cases} \bullet & k_e = 0.676 \text{ (zone atmosphérique)} \\ \bullet & k_t = 1 \text{ (}D_o \rightarrow \text{test de migration)} \\ \bullet & k_c = 0.8 \text{ (temps de cure de 28 jours)} \\ \bullet & t_o = 28 \text{ jours (temps} \rightarrow \text{mesure de } D_o) \end{cases}$$

Structure du réseaux bayésien

Résultats a posteriori de l'identification

Variable	Iteration	Mean	Std. dev
C _{s,D} (% per wt. of concrete)	0	0.0809	0.01
	1	0.0803	0.0078
	, 2	0.0799	0.0069
	3	0.08	0.0065
	4	0.0801	0.0064
	5	0.0802	0.0064
D_o (×10 ⁻¹⁰ m ² /s)	0	4.91	2.8
	1	5.66	2.5
	2	6.38	2
	3	6.75	1.7
	4	6.81	1.5
	5	6.75	1.3
n_D	0	0.804	0.14
	1	0.844	0.11
	2	0.879	0.075
	3	0.894	0.053
	4	0.898	0.044
	5	0.9	0.038

Type de distribution de la concentration de chlorures à la surface $C_{s,D}$

Variable	Distribution	Log likelihood
	Normal	834.63
$C_{s,D}$	Lognormal	836.47
(/wt. of	Weibull	825.00
concrete)	Gamma	835.91
	Beta	835.91

- Log-normale $\rightarrow \mu$ = 0,08 σ = 0,0064 (% / masse de béton)
- Littérature → [Duracrete, 2000], [Vu and Stewart, 2000], [Duprat, 2007]

Type de distribution du coefficient de diffusion de chlorures, D_o

Variable	Distribution	Log likelihood
	Normal	2092.18
D	Lognormal	2093.37
D_o (m ² /s)	Weibull	2089.73
(111 /8)	Gamma	2093.43
	Beta	2093.44

- Beta → définie dans l'intervalle [0, 1]
- Gamma ou Log-normale $\rightarrow \mu$ = 6.75 σ = 1.3 (×10⁻¹⁰ m²/s)
- Littérature :
 - Gamma → [Kirkpatrick et al., 2002]
 - Log-normale → [Wallbank, 1989], [Hoffman et al., 1994], [Enright & Frangopol, 1998]

Type de distribution du coefficient de diffusion de chlorures, D_o

Variable	Distribution	Log likelihood
	Normal	195.47
	Lognormal	195.42
n_D	Weibull	189.60
	Gamma	195.46
	Beta	190.70

- $n_D \rightarrow$ défini dans l'intervalle [0, 1]
- Beta $\rightarrow \mu = 0.9 \ \sigma = 0.038$ (paramètres a = 56.39 et b = 6.18)
- Littérature → [Duracrete, 2000]

Conclusions

- Identification des variables d'entrée des modèles probabilistes de pénétration de chlorures → données réelles (Approche bayésien).
- Réseau bayésien → évidence numérique
 - Actualisations successives \rightarrow améliorer l'identification de μ et σ
- Identification → pont Ferrycarrig (Irlande)
 - 3 variables aléatoires $\rightarrow C_{s,D}$, D_o et n_D

Perspectives

- Identification de v.a. d'un modèle plus représentatif [Bastidas-Arteaga et al., 2011]
- Considération de la corrélation entre les v.a. et de l'erreur du modèle
- Utilisation de réseaux bayésiens dynamiques [Bensi et al, 2011]

Merci de votre attention!